matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenProzesse und MatrizenAliens!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Prozesse und Matrizen" - Aliens!
Aliens! < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aliens!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:29 Do 18.03.2010
Autor: ggg

Aufgabe
In einem Phantasiespiel wird der Entwicklungszyklus von Aliens auf Centaurus beschrieben. Sobald eines dieser Wesen stirbt, werden 80% der auf Vorrat gelegten Eier ausgebrütet (Phase 1). Während der Brutzeit werden 75% der Eier als ungeeignet aussortiert. Wenn dann das Wesen schlüpft, macht es die Jugendzeit (Phase 2) durch, in der wiederum 80%  durch kosmische Strahlung sterben. Am Ende dieser Zeit beginnt das eigentliche Alienleben(Phase 3). Allerdings überstehen diese Zeit 75% der Aliens nicht. Wenn die Kräfte eines Alien nachlassen, verlebt es seinen Lebensabend (Ruhephase 4) auf Centaurus. Die beschriebenen vier Phasen sind gleich lang.

a) Stelle die Alienentwicklung durch einen Übergangsgraphen da und gebe die Übergangsmatrix U an

b) Bestimme eine Anfangsverteilung, die in diesem Modell konstant bleibt

                                                

Hallo Zusammen

Ich habe versucht diese Aufgabe zu bearbeiten, aber meine Lösung wich stark von der eigentlichen Lösung. Ich gebe erstmal die Lösung der Aufgabe ein und dann meine:
[mm] U=\pmat{ 0 & 0 & 0 & 80 \\ 0,25 & 0 & 0 & 0 \\ 0 & 0,2 & 0 & 0 \\ 0 & 0 & 0,25 & 0 }, [/mm] wobei ich kein Plan habe von wo die 80 herkommt.

Meine Idee war, wenn von 80% nämlich 75% sterben so bleiben folglich 56% in der ersten Phase.
Sterben von diese wieder 80%, so bleiben noch in der 2 Phase 44,8% im Leben. Sterben von diese wieder in der dritten Phase 75%, so bleiben schließlich 33,6% übrig. Wenn sie nun in der 4 Phase sterben, so werden dann 80% der auf Vorrat gelegten Eier ausgebrütet, sodass wir wieder in der Phase 1 gelangen.
Meine Ü-Matrix hätte dann folglich so gelautet:
    P1   P2   P3   P4
      
P1  0    0,56  0    0
P2  0    0     0,448 0
P3  0    0     0    0,336
P4  0,8  0     0    0

[mm] \Rightarrow U=\pmat{ 0 & 0,56 & 0 & 0 \\ 0 & 0 & 0,448 & 0 \\ 0 & 0 & 0 & 0,336 \\ 0,8 & 0 & 0 & 0 } [/mm]

Ich weiß nicht wo mein Denkfehler ist, weil ich mein Weg (offensichtlich falsch) schon für logisch empfinde.
Falls ich die wirkliche Lösung betrachte , kann ich mir garnicht die 80 in der Matrix erklären. Ich vermute das das sogar selbst ein Fehler in Lösung ist, da  es mir sinnlos erscheint.

zu b) möchte ich später kommen

Ich würde mich wirklich für jede Hilfe bedanken
lg Jonas

        
Bezug
Aliens!: Antwort
Status: (Antwort) fertig Status 
Datum: 23:52 Do 18.03.2010
Autor: metalschulze

Hallo erstmal,

>  [mm]U=\pmat{ 0 & 0 & 0 & 80 \\ 0,25 & 0 & 0 & 0 \\ 0 & 0,2 & 0 & 0 \\ 0 & 0 & 0,25 & 0 },[/mm]
> wobei ich kein Plan habe von wo die 80 herkommt.

ich auch nicht, ich schätze mal das sollte 0,8 sein. Die 0.8 steht oben rechts, weil der Übergang von Phase 4 zu Phase 1 erfolgt (deshlabd 4.Spalte)

>  
> Meine Idee war, wenn von 80% nämlich 75% sterben so
> bleiben folglich 56% in der ersten Phase.

75% von 80% sind bei mir 60%
Das ist für die MAtrix aber nicht relevant, übrig bleiben nämlich 0.25 vom Rest. Dieser Rest geht von Phase 1 in Phase 2 über

> Sterben von diese wieder 80%, so bleiben noch in der 2
> Phase 44,8% im Leben.

--> 48% auch egal, 0.2 der Viecher von Phase 2 gehen in Phase 3 über
>Sterben von diese wieder in der

> dritten Phase 75%, so bleiben schließlich 33,6% übrig.

Siehe oben von Phase 3 gehen 0.25 in Phase 4 über

> Wenn sie nun in der 4 Phase sterben, so werden dann 80% der
> auf Vorrat gelegten Eier ausgebrütet, sodass wir wieder in
> der Phase 1 gelangen.
> Meine Ü-Matrix hätte dann folglich so gelautet:
>      P1   P2   P3   P4
>        
> P1  0    0,56  0    0
>  P2  0    0     0,448 0
>  P3  0    0     0    0,336
>  P4  0,8  0     0    0
>  
>  
> zu b) möchte ich später kommen
>  
> Ich würde mich wirklich für jede Hilfe bedanken
>  lg Jonas

Gruss Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]