matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraische GeometrieAlgebraische Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebraische Geometrie" - Algebraische Menge
Algebraische Menge < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Algebraische Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Mo 24.11.2014
Autor: evinda

Hallo!!!

Ich will zeigen, dass wenn I,J Ideale von [mm] K[x_1, [/mm] ... , [mm] x_n] [/mm] sind, dann gilt es dass V(I [mm] \cap [/mm] J)=V(I) [mm] \cup [/mm] V(J).

Ich habe gezeigt dass V(I) [mm] \cup [/mm] V(J) [mm] \subseteq [/mm] V(I [mm] \cap [/mm] J).

Wie kann ich aber zeigen, dass V(I) [mm] \cup [/mm] V(J) [mm] \supseteq [/mm] V(I [mm] \cap [/mm] J) ?



Ich habe die Frage auch im Forum onlinemathe gestellt.

        
Bezug
Algebraische Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Mo 24.11.2014
Autor: felixf

Moin!

> Hallo!!!
>  
> Ich will zeigen, dass wenn I,J Ideale von [mm]K[x_1,[/mm] ... , [mm]x_n][/mm]
> sind, dann gilt es dass V(I [mm]\cap[/mm] J)=V(I) [mm]\cup[/mm] V(J).
>  
> Ich habe gezeigt dass V(I) [mm]\cup[/mm] V(J) [mm]\subseteq[/mm] V(I [mm]\cap[/mm]
> J).
>  
> Wie kann ich aber zeigen, dass V(I) [mm]\cup[/mm] V(J) [mm]\supseteq[/mm] V(I
> [mm]\cap[/mm] J) ?

Zeige doch, dass das Komplement von $V(I) [mm] \cup [/mm] V(J)$ im Komplement von $V(I [mm] \cap [/mm] J)$ liegt. Damit hast du die Kontraposition gezeigt.

Wenn $x$ nicht in $V(I) [mm] \cup [/mm] V(J)$ liegt, so gibt es ein $f [mm] \in [/mm] I$ und ein $g [mm] \in [/mm] J$ mit $f(x) [mm] \neq [/mm] 0 [mm] \neq [/mm] g(x)$.

Beachte, dass jetzt auch $f(x) [mm] \cdot [/mm] g(x) [mm] \neq [/mm] 0$ ist.

LG Felix


Bezug
                
Bezug
Algebraische Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 Di 25.11.2014
Autor: evinda

Also ist es so?

x [mm] \notin [/mm] V(I) [mm] \cup [/mm] V(J) [mm] \rightarrow [/mm] x [mm] \notin [/mm] V(I) [mm] \text{ und } [/mm] x [mm] \notin [/mm] V(J) [mm] \rightarrow \exists [/mm] f [mm] \in [/mm] I: f(x) [mm] \neq [/mm] 0 [mm] \text{ und } \exists [/mm] g [mm] \in [/mm] J: g(x) [mm] \neq [/mm] 0 [mm] \rightarrow [/mm] (f [mm] \cdot [/mm] g)(x) [mm] \neq [/mm] 0 : f [mm] \cdot [/mm] g [mm] \in [/mm] I [mm] \cap [/mm] J [mm] \rightarrow [/mm] x [mm] \notin [/mm] V(I [mm] \cap [/mm] J)

Warum gilt aber, wenn f [mm] \in [/mm] I, g [mm] \in [/mm] J, dann f [mm] \cdot [/mm] g [mm] \in [/mm] I [mm] \cap [/mm] J ?

Bezug
                        
Bezug
Algebraische Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Di 25.11.2014
Autor: fred97


> Also ist es so?
>  
> x [mm]\notin[/mm] V(I) [mm]\cup[/mm] V(J) [mm]\rightarrow[/mm] x [mm]\notin[/mm] V(I) [mm]\text{ und }[/mm]
> x [mm]\notin[/mm] V(J) [mm]\rightarrow \exists[/mm] f [mm]\in[/mm] I: f(x) [mm]\neq[/mm] 0
> [mm]\text{ und } \exists[/mm] g [mm]\in[/mm] J: g(x) [mm]\neq[/mm] 0 [mm]\rightarrow[/mm] (f
> [mm]\cdot[/mm] g)(x) [mm]\neq[/mm] 0 : f [mm]\cdot[/mm] g [mm]\in[/mm] I [mm]\cap[/mm] J [mm]\rightarrow[/mm] x
> [mm]\notin[/mm] V(I [mm]\cap[/mm] J)

Ja.


>  
> Warum gilt aber, wenn f [mm]\in[/mm] I, g [mm]\in[/mm] J, dann f [mm]\cdot[/mm] g [mm]\in[/mm]
> I [mm]\cap[/mm] J ?


I [mm]\cap[/mm] J  ist ein Ideal !

FRED


Bezug
                                
Bezug
Algebraische Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Di 25.11.2014
Autor: evinda


> > Warum gilt aber, wenn f [mm]\in[/mm] I, g [mm]\in[/mm] J, dann f [mm]\cdot[/mm] g [mm]\in[/mm]
> > I [mm]\cap[/mm] J ?
>
>
> I [mm]\cap[/mm] J  ist ein Ideal !
>  
> FRED
>  

Was folgt von der Tatsache, dass I [mm]\cap[/mm] J  ein Ideal ist?

Bezug
                                        
Bezug
Algebraische Menge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:22 Di 25.11.2014
Autor: UniversellesObjekt

Etwas Nachdenken/Sich die Definitionen ansehen würde dir wirklich nicht schaden. Da wird dir auch nicht helfen, alle Internetforen der Welt zu fragen, mehr als dass ein Ideal die Definition eines Ideals erfüllt, wird dir niemand sagen können oder wollen.

Liebe Grüße,
UniversellesObjekt

Bezug
                                        
Bezug
Algebraische Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Di 25.11.2014
Autor: fred97


> > > Warum gilt aber, wenn f [mm]\in[/mm] I, g [mm]\in[/mm] J, dann f [mm]\cdot[/mm] g [mm]\in[/mm]
> > > I [mm]\cap[/mm] J ?
> >
> >
> > I [mm]\cap[/mm] J  ist ein Ideal !
>  >  
> > FRED
>  >  
>
> Was folgt von der Tatsache, dass I [mm]\cap[/mm] J  ein Ideal ist?

Zum Beispiel das:

$f  [mm] \in [/mm]  I$  und  $g  [mm] \in [/mm]  J$  , dann $f  [mm] \cdot [/mm]  g  [mm] \in [/mm] I  [mm] \cap [/mm]  J $

FRED

>


Bezug
                                                
Bezug
Algebraische Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Di 25.11.2014
Autor: evinda

Also, ist es folgendermaßen?

f [mm] \in [/mm] I [mm] \text{und da I ein Ideal ist } \Rightarrow [/mm] f [mm] \cdot [/mm] g [mm] \in [/mm] I

g [mm] \in [/mm] J [mm] \text{ und da J ein Ideal ist } \Rightarrow [/mm] f [mm] \cdot [/mm] g [mm] \in [/mm] J

f [mm] \cdot [/mm] g [mm] \in [/mm] I [mm] \text{ und } [/mm] f [mm] \cdot [/mm] g [mm] \in [/mm] J [mm] \Rightarrow [/mm] f [mm] \cdot [/mm] g [mm] \in [/mm] I [mm] \cap [/mm] J

Bezug
                                                        
Bezug
Algebraische Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Di 25.11.2014
Autor: felixf

Moin!

> Also, ist es folgendermaßen?
>  
> f [mm]\in[/mm] I [mm]\text{und da I ein Ideal ist } \Rightarrow[/mm] f [mm]\cdot[/mm]
> g [mm]\in[/mm] I
>  
> g [mm]\in[/mm] J [mm]\text{ und da J ein Ideal ist } \Rightarrow[/mm] f [mm]\cdot[/mm]
> g [mm]\in[/mm] J
>
> f [mm]\cdot[/mm] g [mm]\in[/mm] I [mm]\text{ und }[/mm] f [mm]\cdot[/mm] g [mm]\in[/mm] J [mm]\Rightarrow[/mm] f
> [mm]\cdot[/mm] g [mm]\in[/mm] I [mm]\cap[/mm] J

Was genau willst du wissen? Ob []Arthur es dir richtig vorgesagt hat?

LG Felix


Bezug
                                                                
Bezug
Algebraische Menge: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:23 Di 25.11.2014
Autor: evinda

Ich hatte vergessen, dass ich die gleiche Frage an Arthur gestellt hatte.. Entschuldigung.....

Bezug
                                                                        
Bezug
Algebraische Menge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Do 27.11.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Algebraische Menge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:56 Mo 24.11.2014
Autor: justdroppingby

ohne Worte:
http://math.stackexchange.com/questions/1031162/show-that-vi-cap-j-vi-cup-vj

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]