matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieAlgebra u.a.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Maßtheorie" - Algebra u.a.
Algebra u.a. < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Algebra u.a.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Fr 18.10.2013
Autor: Ladon

Hallo,

ich möchte nur folgendes bestätigt wissen. Mir geht es nicht um die angeleitete Erarbeitung eines Lösungswegs, sondern vielmehr nur um die Gewissheit die folgenden Mengensysteme richtig eingeordnet zu haben (Ring, Algebra, σ-Algebra).
Die Antwort sollte sich also auf ein einfaches Richtig oder Falsch beschränken.
Sei [mm] \omega\not=\emptyset [/mm]
1.) [mm] \mathcal{A}=\{AxA:A\in\mathcal{P}(\omega)\} [/mm] ist σ-Algebra. Im Beweis kann ich ausnutzen, dass [mm] \mathcal{P}(\omega) [/mm] σ-Algebra ist.
2.) [mm] \mathcal{A}=\{A\in\mathcal{P}(\omega): Ahoechstensabzaehlbar\} [/mm] ist ohne Einschränkung bzgl. der Elemente von [mm] \omega [/mm] Ring.
Ich danke euch für eure hoffentlich kurzen Antworten ;-)

MfG Ladon

        
Bezug
Algebra u.a.: Antwort
Status: (Antwort) fertig Status 
Datum: 09:19 Sa 19.10.2013
Autor: fred97


> Hallo,
>  
> ich möchte nur folgendes bestätigt wissen. Mir geht es
> nicht um die angeleitete Erarbeitung eines Lösungswegs,
> sondern vielmehr nur um die Gewissheit die folgenden
> Mengensysteme richtig eingeordnet zu haben (Ring, Algebra,
> σ-Algebra).
>  Die Antwort sollte sich also auf ein einfaches Richtig
> oder Falsch beschränken.
>  Sei [mm]\omega\not=\emptyset[/mm]
>  1.) [mm]\mathcal{A}=\{AxA:A\in\mathcal{P}(\omega)\}[/mm] ist
> σ-Algebra.

Das stimmt nicht !

> Im Beweis kann ich ausnutzen, dass
> [mm]\mathcal{P}(\omega)[/mm] σ-Algebra ist.
>  2.) [mm]\mathcal{A}=\{A\in\mathcal{P}(\omega): Ahoechstensabzaehlbar\}[/mm]
> ist ohne Einschränkung bzgl. der Elemente von [mm]\omega[/mm]
> Ring.

Das stimmt.


FRED

>  Ich danke euch für eure hoffentlich kurzen Antworten ;-)
>  
> MfG Ladon


Bezug
                
Bezug
Algebra u.a.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:34 So 20.10.2013
Autor: Ladon

Vielen Dank für deine Antwort. So habe ich mir das vorgestellt.

MfG Ladon

Bezug
                
Bezug
Algebra u.a.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:34 So 20.10.2013
Autor: Ladon


>  >  Sei [mm]\omega\not=\emptyset[/mm]
>  >  1.) [mm]\mathcal{A}=\{AxA:A\in\mathcal{P}(\omega)\}[/mm] ist
> > σ-Algebra.
>
> Das stimmt nicht !

OK. Du hast Recht. Man findet leicht ein Gegenbeispiel für die Eigenschaft der abzählbare Vereinigung der σ-Algebren.

LG Ladon

Bezug
                
Bezug
Algebra u.a.: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:48 So 20.10.2013
Autor: Ladon


>  >  Die Antwort sollte sich also auf ein einfaches Richtig
> > oder Falsch beschränken.
>  >  Sei [mm]\omega\not=\emptyset[/mm]
>  >  1.) [mm]\mathcal{A}=\{A\times A:A\in\mathcal{P}(\omega)\}[/mm] ist
> > σ-Algebra.
>
> Das stimmt nicht !

Aber [mm]\mathcal{A}=\{A\times A:A\in\mathcal{P}(\omega)\}[/mm] Algebra stimmt. Oder etwa nicht?

LG Ladon

Bezug
                        
Bezug
Algebra u.a.: Antwort
Status: (Antwort) fertig Status 
Datum: 05:59 Mo 21.10.2013
Autor: fred97


> >  >  Die Antwort sollte sich also auf ein einfaches Richtig

> > > oder Falsch beschränken.
>  >  >  Sei [mm]\omega\not=\emptyset[/mm]
>  >  >  1.) [mm]\mathcal{A}=\{A\times A:A\in\mathcal{P}(\omega)\}[/mm]
> ist
> > > σ-Algebra.
> >
> > Das stimmt nicht !
>  
> Aber [mm]\mathcal{A}=\{A\times A:A\in\mathcal{P}(\omega)\}[/mm]
> Algebra stimmt. Oder etwa nicht?

Nein. Denk an Komplemente

FRED

>  
> LG Ladon


Bezug
                                
Bezug
Algebra u.a.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Mo 21.10.2013
Autor: Ladon


> > >  >  Die Antwort sollte sich also auf ein einfaches Richtig

> > > > oder Falsch beschränken.
>  >  >  >  Sei [mm]\omega\not=\emptyset[/mm]
>  >  >  >  1.) [mm]\mathcal{A}=\{A\times A:A\in\mathcal{P}(\omega)\}[/mm]
> > ist
> > > > σ-Algebra.
> > >
> > > Das stimmt nicht !
>  >  
> > Aber [mm]\mathcal{A}=\{A\times A:A\in\mathcal{P}(\omega)\}[/mm]
> > Algebra stimmt. Oder etwa nicht?
>  
> Nein. Denk an Komplemente

OK. Mir ist mein (etwas offensichtlicher) Fehler aufgefallen:
Ich habe das Komplement als [mm] $(\omega\setminus A)\times (\omega \setminus [/mm] A)$ angesehen, was ja auch in [mm] \mathcal{A} [/mm] ist, aber eigentlich sollte das Komplement [mm] $(\omega\times \omega)\setminus (A\times [/mm] A)$ sein. Nicht wahr?

MfG Ladon


Bezug
                                        
Bezug
Algebra u.a.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Mo 21.10.2013
Autor: tobit09

Hallo Ladon!


> > > Aber [mm]\mathcal{A}=\{A\times A:A\in\mathcal{P}(\omega)\}[/mm]
> > > Algebra stimmt. Oder etwa nicht?
>  >  
> > Nein. Denk an Komplemente
>  OK. Mir ist mein (etwas offensichtlicher) Fehler
> aufgefallen:
> Ich habe das Komplement als [mm](\omega\setminus A)\times (\omega \setminus A)[/mm]
> angesehen, was ja auch in [mm]\mathcal{A}[/mm] ist, aber eigentlich
> sollte das Komplement [mm](\omega\times \omega)\setminus (A\times A)[/mm]
> sein. Nicht wahr?

Ja, das Komplement von [mm] $A\times [/mm] A$ (für [mm] $A\in\mathcal{P}(\omega)$) [/mm] in [mm] $\omega\times\omega$ [/mm] ist [mm] $(\omega\times\omega)\setminus (A\times [/mm] A)$.
Dies ist im Allgemeinen nicht gleich [mm] $(\omega\setminus A)\times(\omega\setminus [/mm] A)$.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]