Algebr. Abschluss endl. Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Aufgabe | Zeigen Sie, dass $\bigcup\limits_{n\in\mathbb{N}}\mathbb{F}_{p^n}}$ ein algebraischer Abschluss von $\mathbb{F}_{p}$ ist. |
Also: $\mathbb{F}_{p}$ ist ja der Körper $\mathbb{Z}/p\mathbb{Z}$ für eine Primzahl $p$.
Der Körper $\mathbb{F}_{p^{n}}$ für ein fixes $n$ ist nicht $\mathbb{Z}/p^{n}\mathbb{Z}$ (oder?), sondern der minimale Zerfällungskörper des Polynoms $T^{p^{n}}-T$ aus $\mathbb{F}_{p}[T]$.
Aber wie kann ich die Aufgabe lösen? Mir sagen diese Körper noch nicht viel, tut mir leid. Darum bitte ich euch um Hilfe.
Danke und lg
Kaffeetrinker
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
moin,
Wenn dir endliche Körper noch nicht sonderlich viel sagen könnte es kompliziert werden die Aussage zu beweisen, denn sie setzt schon eine ganze Menge Wissen voraus.
Aber versuchen wir es mal:
Was muss ein algebraischer Abschluss eines Körpers erfüllen?
Sei $K$ ein Körper. Ein Körper $L$ heißt algebraischer Abschluss von $K$, wenn gilt:
....
Such erstmal alle Bedingungen raus, die du dafür zeigen musst, dann können wir sie eine nach der anderen abarbeiten; ein paar davon sind recht leicht zu zeigen, andere sind ohne nötiges Vorwissen über endliche Körper (insbesondere Eindeutigkeit) kaum möglich.
lg
Schadow
|
|
|
|