matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAffinität
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Affinität
Affinität < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Affinität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Di 11.03.2008
Autor: morpheus_R

Aufgabe
In R^6x1 sei A1 die affine Hülle der Punkte
(1,2,1,0,0,1), (0,0,0,1,1,2) (1,0,1,0,0,1) (0,0,0,0,0,1) (0,2,0,0,0,1)

Stelle A1 als Nebenklasse eines Unterraumes U1 [mm] \subset \IR [/mm] ^6x1 dar und bestimme eine affine Basis von A1.
Zeige dass A1 kein Unterraum des Vektoraumes [mm] \IR [/mm] ^6x1 ist

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Alles affine ist mir ein graus, da steig ich leider aus.

BITTE helft mir!

        
Bezug
Affinität: Antwort
Status: (Antwort) fertig Status 
Datum: 01:51 Mi 12.03.2008
Autor: Zneques

Hallo,

> Stelle A1 als Nebenklasse eines Unterraumes U1 [mm] \subset \IR [/mm] ^6x1 dar.

Für die Darstellung als Nebenklasse benötigst du erstmal einen Repräsentanten. Also einen bel. Vektor der affinen Menge.
z.B. A
Nun musst du den Unterraum der "an A hängt" bestimmen.
Dieser besteht aus [mm] \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} [/mm] und [mm] \overrightarrow{AE}. [/mm]
(lin. Unabh. überprüfen !)

> bestimme eine affine Basis

Die affine Basis besteht aus Punkten, die den affinen Raum aufspannen.
Dies würden die vorgegebenen Punkte erfüllen. Es läßt sich jedoch vermuten, dass lin. abh. vorliegt und somit ein/mehere Punkt(e) überflüssig ist/sind.

> Zeige dass A1 kein Unterraum des Vektoraumes $ [mm] \IR [/mm] $ ^6x1 ist.

Es gibt einen entscheidenen Unterschied zwischen UR. und affinen Räumen den du hier testen musst.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]