matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenAffine Abbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Affine Abbildungen
Affine Abbildungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Affine Abbildungen: Aufgabe
Status: (Frage) überfällig Status 
Datum: 16:24 Mo 05.01.2009
Autor: uniklu

Aufgabe
Folgende Unterpunkte sind zu zeigen:
a) Die Hintereinaderausführung von affinen Abbildungen ist wieder affin.
b) Affine Abbildungen sind parallelenreu, d.h. ist [mm] A_1 [/mm] || [mm] A_2 [/mm] => [mm] \alpha( A_1 [/mm] ) || [mm] \alpha( A_2 [/mm] )
c) Die inverse Abbildung einer bijektiven affinen Abbildung [mm] \alpha [/mm] : A -> A ist wieder affin. Wie sieht ihre Darstellung aus?
d) Bei der Abbildung eines Parallelogramms durch die Affinität [mm] \alpha( \vec{x} [/mm] ) = [mm] C\vec{x} [/mm] + [mm] \vec{c} [/mm] wird sein Flächeninhalt mit der Determinante |C| multipliziert.

Hallo!

Ich stehe leider Gottes wieder etwas auf der Leitung.


ad a)
Ich habe den Tipp erhalten, dass ich mit der folgenden Darstellung arbeiten soll [mm] \alpha(x) [/mm] = [mm] \overline{\alpha} [/mm] (x - p) + [mm] \alpha(x) [/mm]
[mm] \alpha(x) [/mm] ist ja die Punktabbildung
[mm] \overline{\alpha} [/mm] () ist die Vektorabbildung

Eine affine Abbildung [mm] \alpha: [/mm] A -> B heißt affin, wenn die durch [mm] \alpha [/mm] induzierte Abbildung [mm] (\overline{\alpha}) [/mm] der Differenzräume eine lineare Abbildung ist.


Also mit der angebenene Darstellung sehen die zwei Abbildungen folgend aus:
[Def. 1]
[mm] \alpha(x) [/mm] = [mm] \overline{\alpha} [/mm] (x - p) + [mm] \alpha(p) [/mm]
[mm] \beta(x) [/mm] = [mm] \overline{\beta} [/mm] (x - q) + [mm] \beta(q) [/mm]

nun werden die beiden Abbildungen hintereinander ausgeführt
=> [mm] (\alpha \circ\ \beta)(x) [/mm] [Def. Hintereinanderausführung von Funktionen]
= [mm] \alpha(\beta(x)) [/mm] [Def. 1]
= [mm] \alpha(\overline{\beta} [/mm] (x - q) + [mm] \beta(q)) [/mm] [Def. 1]
= [mm] \overline{\alpha} (\overline{\beta} [/mm] (x - q) + [mm] \beta(q) [/mm] + [mm] \alpha(p)) [/mm] + [mm] \alpha(p) [/mm]
?? hier stehe ich an...


-------------------------------

ad b)
Jede affine abbildung hat folgende form:
[mm] f(\vec{t}) [/mm] = [mm] A\overline{x} [/mm] + [mm] \vec{t} [/mm]

Betrachte nu 2 parallele Gerade, d.h. Geraden mit gleichem Richtungsvektor [mm] \vec{u} [/mm]

g = [mm] \{\lambda \vec{u} + \vec{v} : \lambda \in \IR \} [/mm]
h = [mm] \{\lambda \vec{u} + \vec{w} : \lambda \in \IR \} [/mm]

Nun berechne Bilder von g und h
[mm] f(\lambda \vec{u} [/mm] + [mm] \vec{b} [/mm] ) = A( [mm] \lambda \vec{u} [/mm] + [mm] \vec{v} [/mm] ) + [mm] \vec{t} [/mm] = [mm] A\lambda \vec{u}+ A\vec{v} [/mm] + [mm] \vec{t} [/mm]
= [mm] A\lambda \vec{u} [/mm] + [mm] (A\vec{v} [/mm] + [mm] \vec{t} [/mm] )

[mm] f(\lambda \vec{u} [/mm] + [mm] \vec{w} [/mm] ) = [mm] A\lambda \vec{u} [/mm] + [mm] (A\vec{w} [/mm] + [mm] \vec{t} [/mm] )

=> beide Bildgeraden haben also den gleichen Richtungsvektor [mm] A\vec{u} [/mm] => sie sind somit parallel


-------------------------------

ad c)
[mm] \alpha: [/mm] A -> A

Beweis:
Ist [mm] \alpha [/mm] invertierbar und y = [mm] \alpha(x) [/mm] + v
=>
x = [mm] \alpha^{-1} [/mm] (y - v) [Wegen Linearität]
= [mm] \alpha^{-1} [/mm] (y) - [mm] \alpha^{-1} [/mm] (v) = [mm] (T_(\alpha^{-1} [/mm] (v)) [mm] \circ\ \alpha^{-1} [/mm] ) (y)
=> also ist die inverse Abbildung affin

-------------------------------

ad d)
bitte um hilfe



vielen dank für jede hilfe!

lg


Crosspost hier: http://matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=115292

        
Bezug
Affine Abbildungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 08.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]