matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenAdjungierte Matrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Adjungierte Matrix
Adjungierte Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Adjungierte Matrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:52 Fr 15.05.2009
Autor: chipbit

Aufgabe
Sei [mm] A:=\pmat{ 1 & 0 & i \\ 0 & 1 & 0 \\ 0 & 0 & 1 } [/mm] , [mm] B:=\pmat{ 3 & 1 & 0 \\ 1& 3 & 0 \\ 0 & 0 & 2 } [/mm]
Zeige, dass das Adjungierte von bezüglich des hermiteschen Skalarproduktes
g: [mm] \IC^3 \times \IC^3 \to \IC [/mm]
(v,w) [mm] \mapsto g(v,w):=v^T*B*\overline{w} [/mm]
durch [mm] \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \bruch{-3}{2}i & \bruch{-1}{2}i & 1 } [/mm] gegeben ist.

Hallo Leute,
irgendwie steh ich bei der Aufagbe auf dem Schlauch. An sich habe ich mit den adjungierten kein Problem, hier bringt mich aber dieses hermitesche Skalarprodukt ein wenig in Verlegenheit. Und zwar deshalb, das ich einfach nicht weiß was ich mit den beiden Vektoren v und w anfangen soll. Kann man die als Eigenvektoren von A sehen? Oder definiere ich die Spalten von A zum Beispiel als v und w? Wahrscheinlich merkt man schon an meinen doofen Fragen dass ich grad echt keine Ahnung habe was ich mit den beiden anstellen soll. Ich meine, das ich bei B auch B einsetze ist mir klar, aber ich muss ja eben A auch irgendwie verwenden um eben zeigen zu können, was ich zeigen soll. Vielleicht kann mir einer von euch helfen und mir erklären woher ich v und w nehme (müssen ja irgendwie aus A entspringen oder nicht?). Oder zumindest einen kleinen Hinweis geben, wie ich das am Besten angehe.
LG, chip

        
Bezug
Adjungierte Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Fr 15.05.2009
Autor: fred97

Du sollst zeigen:

                $g(Ax,y) = g(x,By)$ für alle $x,y [mm] \in \IC^3$ [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]