matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesAdjungierte Abbildung bestimm.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Adjungierte Abbildung bestimm.
Adjungierte Abbildung bestimm. < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Adjungierte Abbildung bestimm.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:14 So 23.05.2010
Autor: steppenhahn

Aufgabe
Seien [mm] (V,\gamma_{V}), (W,\gamma_{W}) [/mm] euklidische Vektorräume (können unendlichdimensional sein!), und [mm] \phi:V\to [/mm] W linear. Dann heißt [mm] \psi:W\to [/mm] V zu [mm] \phi [/mm] adjungiert, wenn  für alle [mm] v\in [/mm] V, [mm] w\in [/mm] W gilt:
[mm] \gamma_{W}(\phi(v),w) [/mm] = [mm] \gamma_{V}(v,\psi(w)). [/mm]
1) Zeige: Es gibt höchstens eine zu [mm] \phi [/mm] adjungierte Abbildung
2) Der Vektorraum [mm] \IR^{(\IN)} [/mm] der abbrechenden Folgen über dem Körper [mm] \IR [/mm] wird mit dem Skalarprodukt [mm] \gamma((x_{n})_{n\in\IN},(y_{n})_{n\in\IN} \mapsto\sum_{n\in\IN}a_{n}*b_{n} [/mm] zu einem euklidischen Vektorraum. Bestimmen Sie zu den folgenden Endomorphismen wenn möglich, die Adjungierte, oder zeigen Sie, dass es eine solche nicht gibt.
a) [mm] \phi:\IR^{(\IN)}\to\IR^{(\IN)}:(a_{1},a_{2},a_{3},...) \mapsto (a_{2},a_{3},a_{4},...). [/mm]
b) [mm] \psi:\IR^{(\IN)}\to\IR^{(\IN)}:(a_{1},a_{2},a_{3},...) \mapsto (\sum_{n\in\IN}a_{n},a_{1},a_{2},a_{3},...) [/mm]

Hallo!

Bei obiger Aufgabe komme ich nicht weiter...
Zu 1): Ist das wirklich so einfach (ich glaube nicht...):
Wäre [mm] \psi' [/mm] eine weitere Adjungiert, müsste für alle [mm] v\in [/mm] V, [mm] w\in [/mm] W gelten:
[mm] $\gamma_{V}(v,\psi'(w)) [/mm] = [mm] \gamma_{W}(\phi(v),w) [/mm] = [mm] \gamma_{V}(v,\psi(w))$. [/mm] Daraus folgt für alle [mm] v\in [/mm] V, [mm] w\in [/mm] W: [mm] $\gamma_{V}(v,\psi'(w)-\psi(w)) [/mm] = 0$ (da Skalarprodukt linear), und daraus folgt wiederum, dass [mm] \psi'(w) [/mm] = [mm] \psi(w) [/mm] für alle [mm] w\in [/mm] W.

Zu 2): Hier hänge ich. Ich weiß, dass [mm] (e_{1},e_{2},e_{3},...) [/mm] eine ONB von [mm] \IR^{(IN)} [/mm] bzgl. des Skalarproduktes ist.
In der Vorlesung haben wir für endlichdimensionale VR die Formel gehabt: Für [mm] \phi:V\to [/mm] W ist

[mm] $\phi^{ad} [/mm] = [mm] \Gamma_{V}^{-1}\circ \phi^{\*} \circ \Gamma_{W}$, [/mm]

wobei [mm] $\Gamma_{V}:V\to V^{\*}, w\mapsto \gamma(*,w)$ (V^{\*} [/mm] Dualraum zu V), und [mm] $\phi^{\*}:W^{\*}\to V^{\*}: [/mm] f [mm] \mapsto \phi\circ [/mm] f$.

Aber kann ich diese Formel jetzt trotzdem benutzen, obwohl die VR unendlichdimensional sind? Komme ich damit zum Ziel - muss ich alle drei Abbildungen oben ausrechnen?

Vielen Dank für Eure Hilfe,
Grüße,
Stefan

        
Bezug
Adjungierte Abbildung bestimm.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Di 25.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]