matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteAdjungierte Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Skalarprodukte" - Adjungierte Abbildung
Adjungierte Abbildung < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Adjungierte Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 Mi 07.07.2010
Autor: Teufel

Aufgabe
Sei V ein endlichdimensionaler [mm] \IC-Vektorraum, [/mm] < , > ein Skalarprodukt. f:V [mm] \to [/mm] V sei eine lineare Abbildung. Zeige: Es existiert genau eine lineare Abbildung f*:V [mm] \to [/mm] V, sodass für alle x, y [mm] \in [/mm] V gilt: <f(x),y>=<x,f*(y)>.

Hi!

Hier weiß ich nicht, wie ich die Existenz zeigen kann. Ich habe zwar ein bisschen rumgerechnet und ein paar Gleichungen aufgestellt, aber nichts herausbekommen, was die Existenz solch einer Abbildung f* zeigen würde. Die Eindeutigkeit ist dann allerdings einfach zu zeigen.

Aber kann mir jemand bei der Existenz von f* helfen?

Danke.

[anon] Teufel

        
Bezug
Adjungierte Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Mi 07.07.2010
Autor: wieschoo


> Sei V ein endlichdimensionaler [mm]\IC-Vektorraum,[/mm] < , > ein
> Skalarprodukt. f:V [mm]\to[/mm] V sei eine lineare Abbildung. Zeige:
> Es existiert genau eine lineare Abbildung f*:V [mm]\to[/mm] V,
> sodass für alle x, y [mm]\in[/mm] V gilt: <f(x),y>=<x,f*(y)>.
>  Hi!
>  
> Hier weiß ich nicht, wie ich die Existenz zeigen kann. Ich
> habe zwar ein bisschen rumgerechnet und ein paar
> Gleichungen aufgestellt, aber nichts herausbekommen, was
> die Existenz solch einer Abbildung f* zeigen würde. Die
> Eindeutigkeit ist dann allerdings einfach zu zeigen.
>  
> Aber kann mir jemand bei der Existenz von f* helfen?
>  
> Danke.
>  
> [anon] Teufel

Hi,

Also sei [mm] $a_1,\ldots,a_m$ [/mm] eine ONB von V. Setze [mm] $f^{\star}(w):=\sum_{k=1}^{n}{(w|f(a_k)a_k}$ [/mm]

Bezug
                
Bezug
Adjungierte Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 Mi 07.07.2010
Autor: Teufel

Hi!

Danke erst mal.

Aber was ist denn [mm] (w|f(a_k)) [/mm] dabei?

[anon] Teufel

Bezug
                        
Bezug
Adjungierte Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Mi 07.07.2010
Autor: felixf

Moin

> Danke erst mal.
>  
> Aber was ist denn [mm](w|f(a_k))[/mm] dabei?

Eine andere Schreibweise fuer's Skalarprodukt :)

LG Felix


Bezug
                                
Bezug
Adjungierte Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 Mi 07.07.2010
Autor: Teufel

Hi!

Ok, danke! Im Nachhinein frage ich mich aber, wie man genau auf dieses f* kommen soll... da hätte ich ja ewig nach gesucht.

[anon] Teufel

Bezug
                                        
Bezug
Adjungierte Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Mi 07.07.2010
Autor: felixf

Moin

> Ok, danke! Im Nachhinein frage ich mich aber, wie man genau
> auf dieses f* kommen soll... da hätte ich ja ewig nach
> gesucht.

Nimm eine ONB [mm] $a_1, \dots, a_n$. [/mm] Dann kannst du jeden Vektor $v [mm] \in [/mm] V$ schreiben als [mm] $\sum_{i=1}^n \langle [/mm] v, [mm] a_i \rangle a_i$. [/mm]

Damit ist $f(v) = [mm] \sum_{i=1}^n \langle [/mm] f(v), [mm] a_i \rangle a_i [/mm] = [mm] \sum_{i=1}^n \langle [/mm] v, [mm] a_i \rangle f(a_i)$. [/mm]

Schreibe [mm] $f^\ast(w) [/mm] := [mm] \sum_{i=1}^n \lambda_i a_i$. [/mm] Nun hast du die Gleichung [mm] $\langle [/mm] f(v), w [mm] \rangle [/mm] = [mm] \langle [/mm] v, [mm] f^\ast(w) \rangle$. [/mm] Eingesetzt bedeutet das

[mm] $\langle \sum_i \langle [/mm] v, [mm] a_i \rangle f(a_i), \sum_j \langle [/mm] w, [mm] a_j \rangle a_j \rangle [/mm] = [mm] \langle \sum_i \langle [/mm] v, [mm] a_i \rangle a_i, \sum_j \lambda_j a_j \rangle$. [/mm]

Auf der linken Seite vereinfacht: [mm] $\langle \sum_i \langle [/mm] v, [mm] a_i \rangle f(a_i), \sum_j \langle [/mm] w, [mm] a_j \rangle a_j \rangle [/mm] = [mm] \sum_{i,j} \langle [/mm] v, [mm] a_i \rangle \langle [/mm] w, [mm] a_j \rangle \langle f(a_i), a_j \rangle$ [/mm]

Auf der rechten Seite vereinfacht: [mm] $\langle \sum_i \langle [/mm] v, [mm] a_i \rangle a_i, \sum_j \lambda_j a_j \rangle [/mm] = [mm] \sum_{i,j}\sum_i \langle [/mm] v, [mm] a_i \rangle \lambda_j \langle a_i, a_j \rangle [/mm] = [mm] \sum_i \langle [/mm] v, [mm] a_i \rangle \lambda_i$. [/mm]

Damit ist die Gleichheit z.B. dann erfuellt, wenn [mm] $\lambda_i [/mm] = [mm] \sum_j \langle [/mm] w, [mm] a_j \rangle \langle f(a_i), a_j \rangle$ [/mm] ist fuer alle $i$. (Es kann auch anders erfuellt sein, aber das hier ist die "offensichtlichste" Moeglichkeit.)

Jetzt beachte, dass fuer eine ONB [mm] $a_1, \dots, a_n$ [/mm] gilt [mm] $\langle [/mm] v, w [mm] \rangle [/mm] = [mm] \sum_i \langle [/mm] v, [mm] a_i \rangle \langle [/mm] w, [mm] a_i \rangle$. [/mm]

LG Felix


Bezug
                                                
Bezug
Adjungierte Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:52 Mi 07.07.2010
Autor: Teufel

Ok, das ist alles super verständlich, vielen Dank! Ich muss wohl mal lernen, besser mit Skalarprodukten rumzurechnen.
Schönen Abend noch und vielen Dank nochmal!

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]