matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisAdditionstheoreme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Additionstheoreme
Additionstheoreme < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Additionstheoreme: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:56 Di 10.05.2011
Autor: Rubstudent88

Aufgabe 1
Es sei [mm] cos(z):=\bruch{1}{2}(e^{iz}+e^{-iz}) [/mm] und [mm] sin(z)=\bruch{1}{2i}(e^{iz}-e^{-iz}) [/mm] für z [mm] \in \IC. [/mm]
a) Beweisen Sie:
cos(z+w)=cos(z)cos(w)-sin(z)sin(w)
sin(z+w)=sin(z)cos(w)+cos(z)sin(w)

Aufgabe 2
b) Beweisen Sie: ex existiert ein Polynom [mm] P_{n}(a_{1},a_{2}), [/mm] n [mm] \in \IN, [/mm] so dass gilt: [mm] cos(nz)=P_{n}(cos(z),sin(z)) [/mm]

Hallo zusammen,

Aufgabenteil a habe ich mit Ausrechnen gelöst.
Ich weiß aber noch nicht, wie ich Aufgabenteil b lösen soll:

Nach den Additionstheoreme müsste doch [mm] cos(2z)=cos^{2}(z)-sin^{2}(z) [/mm] sein.
cos(3z) wäre dann = [mm] cos(2z+z)=cos^{2}(z)cos(z)-sin^{2}(z) *sin(z)=cos^{3}(z)-sin^{3}(z). [/mm]
Ist das soweit richtig?

D.h. ich müsste jetzt mit Hilfe von Induktion zeigen:
[mm] cos(nz)=cos(z)^{n}-sin(z)^{n} [/mm] ?


        
Bezug
Additionstheoreme: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Di 10.05.2011
Autor: MathePower

Hallo Rubstudent88,

> Es sei [mm]cos(z):=\bruch{1}{2}(e^{iz}+e^{-iz})[/mm] und
> [mm]sin(z)=\bruch{1}{2i}(e^{iz}-e^{-iz})[/mm] für z [mm]\in \IC.[/mm]
>  a)
> Beweisen Sie:
>  cos(z+w)=cos(z)cos(w)-sin(z)sin(w)
>  sin(z+w)=sin(z)cos(w)+cos(z)sin(w)
>  b) Beweisen Sie: ex existiert ein Polynom
> [mm]P_{n}(a_{1},a_{2}),[/mm] n [mm]\in \IN,[/mm] so dass gilt:
> [mm]cos(nz)=P_{n}(cos(z),sin(z))[/mm]
>  Hallo zusammen,
>  
> Aufgabenteil a habe ich mit Ausrechnen gelöst.
>  Ich weiß aber noch nicht, wie ich Aufgabenteil b lösen
> soll:
>  
> Nach den Additionstheoreme müsste doch
> [mm]cos(2z)=cos^{2}(z)-sin^{2}(z)[/mm] sein.
>  cos(3z) wäre dann = [mm]cos(2z+z)=cos^{2}(z)cos(z)-sin^{2}(z) *sin(z)=cos^{3}(z)-sin^{3}(z).[/mm]
>  
> Ist das soweit richtig?


Nein, das ist nicht richtig:

[mm]cos(2z+z)=cos({\red{2}z)cos(z)-sin(\red{2}z) *sin(z)[/mm]


>  
> D.h. ich müsste jetzt mit Hilfe von Induktion zeigen:
>  [mm]cos(nz)=cos(z)^{n}-sin(z)^{n}[/mm] ?
>  


Gruss
MathePower

Bezug
                
Bezug
Additionstheoreme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:01 Mi 11.05.2011
Autor: Rubstudent88

Hallo Mathepower,

danke für deine Antwort!

Was muss ich dann jetzt bei b zeigen?

cos(nz)=cos((n-1)z+z)=cos((n-1)z)cos(z)-sin((n-1)z)sin(z)?



Bezug
                        
Bezug
Additionstheoreme: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Mi 11.05.2011
Autor: Al-Chwarizmi


> Hallo Mathepower,
>  
> danke für deine Antwort!
>  
> Was muss ich dann jetzt bei b zeigen?
>  
> cos(nz)=cos((n-1)z+z)=cos((n-1)z)cos(z)-sin((n-1)z)sin(z)?


Beachte, dass gar nicht verlangt ist, eine konkrete Formel
für $\ cos(n*z)$ aufzustellen.
Setzen wir als Abkürzung mal c:=cos(z) und s:=sin(z) .
Dann ist also

    $\ cos(z)\ =\ c$                  (Polynom vom Grad 1 in c allein)
    $\ cos(2z)\ =\ [mm] c^2-s^2$ [/mm]              (Polynom vom Grad 2 in c und s)
    $\ cos(3z)\ =\ cos(2z+z)\ =\  ......$

Darin steckt schon mal eine Verankerung für einen Induk-
tionsbeweis. Zu zeigen ist also noch: falls [mm] cos(n*z)\in \mathbb{P}_n(c,s), [/mm]
dann ist  [mm] cos((n+1)*z)\in \mathbb{P}_{n+1}(c,s) [/mm] .

LG   Al-Chw.    

Bezug
                        
Bezug
Additionstheoreme: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Mi 11.05.2011
Autor: fred97

Weitere Möglichkeit:

$cos(nz)= [mm] \bruch{1}{2}(e^{inz}+e^{-inz})= \bruch{1}{2}((cos(z)+isin(z))^n+(cos(z)-isin(z))^n)$ [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]