matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenAdditionstheoreme
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Trigonometrische Funktionen" - Additionstheoreme
Additionstheoreme < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Additionstheoreme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Mo 05.02.2007
Autor: Snap

Aufgabe
Additionstheoreme:

Zwei Gleichungen mit zwei Unbekannten umformen. Eigentlich ganz einfach...

Hallo,

ich hab folgendes Problem:

Gegeben sind folgende Ausgangsgleichungen (die Zahl in Klammern soll der Index sein, also eigentlich tiefgestellt)

     F(1)*sinx+F(2)*siny=H*cosz
    -F(1)*cosx+F(2)*cosy=H*sinz

.

Ich habe versucht durch quadrieren und addieren der beiden Gleichungen
und unter zuhilfe nahme der Additionstheoreme folgende vorgebene Gleichung zu bekommen:

H²=F(1)²+F(2)²-2F(1)*F(2)*cos(x+y)


Leider erfolglos. Ich verzweifel wirklich!
Vielen vielen Dank für eure Hilfe

Markus





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Additionstheoreme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:10 Mo 05.02.2007
Autor: Karl_Pech

Hallo Markus,


[willkommenmr]


> H²=F(1)²+F(2)²-2F(1)*F(2)*cos(x+y)


Ohne mich jetzt näher mit deinem Problem befassen zu können, erinnert mich die vorgegebene Gleichung etwas an den Kosinussatz. Falls es da eine Verbindung gibt, so könnte man ja vielleicht den Beweis zum Kosinussatz nehmen und ihn auf diese Gleichung "trimmen". (Kommt auf den Kontext an, aus dem du diese Gleichung her hast.)



Grüße
Karl




Bezug
                
Bezug
Additionstheoreme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:22 Mo 05.02.2007
Autor: Snap

Erstmal vielen Dank für die schnelle Reaktion auf mein Problem!

Das Problem ist eigentlich viel mehr mechanischer als mathematischer Natur. Ich muss gewisse Kräfte ausrechnen. Gegeben sind in diesem Fall die beiden Gleichungen Hcosz=... und Hsinz =...   .

Leider schaffe ich es einfach nicht die beiden Gleichungen so zu addieren, dass das gewünschte Ergebnis heraus kommt.
Kann mir vllt jmd zeigen wie das geht?

Markus

Bezug
        
Bezug
Additionstheoreme: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Mo 05.02.2007
Autor: galileo

Hallo Snap

[mm] F_{1}\sin x+F_{2}\sin y=H\cos z [/mm]
[mm] -F_{1}\cos x+F_{2}\cos y=H\sin z [/mm]

Du quadrierst und addierst die beiden Gleichungen:

[mm] H^2\cos^{2}z+H^2\sin^{2}z=\left( F_{1}\sin x+F_{2}\sin y\right)^{2}+\left( -F_{1}\cos x+F_{2}\cos y\right)^{2} [/mm]

[mm] H^2\left( \cos^{2}z+\sin^{2}z\right)= F_{1}^{2}\sin^{2} x+F_{2}^{2}\sin^{2} y +2F_{1}F_{2}\sin x\sin y +F_{1}^{2}\cos^{2} x+F_{2}^{2}\cos^{2} y -2F_{1}F_{2}\cos x\cos y [/mm]
[mm] H^2 =F_{1}^{2}\left( \sin^{2} x+\cos^{2} x\right) +F_{2}^{2}\left( \sin^{2} y+\cos^{2} y\right) -2F_{1}F_{2}\left( -\sin x\sin y+\cos x\cos y\right) [/mm]

[mm] H^{2}=F_{1}^{2}+F_{2}^{2}-2F_{1}F_{2}\cos\left( x+y\right) [/mm]

Du berücksichtigst hier die trigonometrischen Formeln:

[mm]\sin^{2}x+\cos^{2}x=1[/mm]
[mm]\cos(x+y)=\cos x\cos y-\sin x\sin y[/mm]

Versuche es nachzuvollziehen!

Viele Grüße, galileo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]