matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisAdditionstheoreme
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Additionstheoreme
Additionstheoreme < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Additionstheoreme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Di 22.11.2005
Autor: wenbockts

Bin überfordert mit der Additionstheoreme.
Berechnen sie mit Hilfe geeigneter Additionstheoreme alle x  [mm] \in \IR [/mm] , die die Gleichung
cos (4x) = cos (2x)
erfüllen.
Könnt ihr mir da helfen?
Gruß wenbockts

        
Bezug
Additionstheoreme: Tipp
Status: (Antwort) fertig Status 
Datum: 17:28 Di 22.11.2005
Autor: Loddar

Hallo wenbockts!


Wende auf [mm] $\cos(4x) [/mm] \ = \ [mm] \cos(2*2x)$ [/mm] folgendes Additionstheorem an:

[mm] $\cos(2\alpha) [/mm] \ = \ [mm] 2*\cos^2(\alpha)-1$ [/mm]


Anschließend substituieren $z \ := \ [mm] \cos(2x)$ [/mm] und Du erhältst eine quadratische Gleichung.


Gruß
Loddar


Bezug
                
Bezug
Additionstheoreme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Di 22.11.2005
Autor: wenbockts

Okay hab ich gemacht. Da hab ich dann für z -1/2 und 1 raus, wenn ich rücksubstituiere, bekomm ich für ein x  0 und für das andere ne ziemlich krumme Zahl (gerundet etwa 1) . Kann das sein?

Bezug
                        
Bezug
Additionstheoreme: mehr Lösungen
Status: (Antwort) fertig Status 
Datum: 18:23 Di 22.11.2005
Autor: Loddar

Hallo wenbockts!


> wenn ich rücksubstituiere, bekomm ich für ein x  0
> und für das andere ne ziemlich krumme Zahl (gerundet etwa 1).

[ok] Ja, das kann sein.

Dabei handelt es sich bei der "krummen Zahl" um  [mm] $x_2 [/mm] \ = \ [mm] \bruch{\pi}{3}$ [/mm] .


[aufgemerkt] Bedenke, dass es ja noch mehr Lösungen gibt, da die cos-Funktion periodisch ist.


Gruß
Loddar


Bezug
                                
Bezug
Additionstheoreme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:39 Di 22.11.2005
Autor: wenbockts

aha jetzt is mir die krumme zahl auch klar, danke =) hab mich schon gewundert. hm ja stimmt, da bekommt man dann eine reihe von ergebnissen.
danke für die schnelle hilfe. LG

Bezug
                                
Bezug
Additionstheoreme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Di 22.11.2005
Autor: wenbockts

Hm Mist jetzt hab ich doch noch mal ne Frage. Woher kam denn jetzt eigentlich die Formel cos (2 [mm] \alpha) [/mm] = 2 [mm] cos^2 [/mm] (2 [mm] \alpha)-1 [/mm]  ?
Ist die aus irgendeiner Formelsammlung?? Oder wie kommt man darauf?

Bezug
                                        
Bezug
Additionstheoreme: Additionstheorem
Status: (Antwort) fertig Status 
Datum: 19:06 Di 22.11.2005
Autor: Loddar

Hallo wenbockts!


Diese Formel entsteht aus dem Additionstheorem (und steht auch in meiner Formelsammlung ;-) ...) für [mm] $\alpha [/mm] \ = \ [mm] \beta$: [/mm]

[mm] $\cos(\alpha+\beta) [/mm] \ = \ [mm] \cos(\alpha)*\cos(\beta)-\sin(\alpha)*\sin(\beta)$ [/mm]


Zudem wurde dann noch der trigonometrische Pythagoras [mm] $\sin^2(\alpha) [/mm] + [mm] \cos^2(\alpha) [/mm] \ = \ 1$ verwendet.


Gruß
Loddar


Bezug
                                                
Bezug
Additionstheoreme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Di 22.11.2005
Autor: wenbockts

ahaaa.. mir geht ein licht auf... hab diese "formel" jetzt mal als nebenrechnung hergeleitet, das ist vielleicht besser.
so dann wäre das thema hiermit definitiv beendet ;) und ich danke für die super tolle hilfe =)
bis demnächst und noch nen schönen abend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]