matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionAddition zur einer Summenforme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Addition zur einer Summenforme
Addition zur einer Summenforme < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Addition zur einer Summenforme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 So 24.10.2010
Autor: Parkan


Hallo
Kann mir einer erklären Wie man folgendes addiert.

[mm](\summe_{i=1}^{n} i\mbox{})^2 +(n+1)^3[/mm]

Vielen Dank.
Jenny



        
Bezug
Addition zur einer Summenforme: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 So 24.10.2010
Autor: Sax

Hi,

du brauchst die Summenformel [mm] \summe_{i=1}^{n} [/mm] i  = [mm] \bruch{n*(n+1)}{2}, [/mm] dann ausmultiplizieren, zusammenfassen, Hauptnenner, ... (das Repertoire ist reichhaltig), aber du weißt ja wo du hin willst.

Man kann evtl. beide Seiten der zu beweisenden Gleichung so lange umformen, bis sie sich in der Mitte treffen und dann alles von Anfang bis Ende aufschreiben.

Gruß Sax.

Bezug
                
Bezug
Addition zur einer Summenforme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 So 24.10.2010
Autor: Parkan

Vielen Dank für die schnelle Antowrt. Jetzt konnte ich den Beweis zeigen aber.  Jetzt verstehe ich aber nicht wie du so schnell wusstes das

[mm] $\summe_{i=1}^{n} [/mm] i = [mm] \bruch{n(n+1)}{2} [/mm] ist

Kannst du noch erklären wie man aus Summen Formel auf solche Brüche kommt.

Danke :D


Bezug
                        
Bezug
Addition zur einer Summenforme: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 So 24.10.2010
Autor: angela.h.b.


> Vielen Dank für die schnelle Antowrt. Jetzt konnte ich den
> Beweis zeigen aber.  Jetzt verstehe ich aber nicht wie du
> so schnell wusstes das
>  
> [mm]$\summe_{i=1}^{n}[/mm] i = [mm]\bruch{n(n+1)}{2}[/mm] ist

Hallo,

diese Summenformel ist meist das erste, was man mit vollständiger Induktion zeigt.
Bestimmt hattet Ihr das auch.

Ansonsten googele mal nach "der kleine Gauß".

Gruß v. Angela

Gruß v. Angela


>  
> Kannst du noch erklären wie man aus Summen Formel auf
> solche Brüche kommt.
>  
> Danke :D
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]