matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesAbzählbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Abzählbarkeit
Abzählbarkeit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abzählbarkeit: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 19:37 Do 03.11.2011
Autor: peterpan22

a) Beweisen Sie, dass die Menge [mm] $\{f : \IN_0 \to \IN_0 , f(n) = 0\}$ [/mm] für fast alle n Abzählbar  ist.
b) Beweisen Sie, dass die Menge [mm] $\{f : \IN_0 \to \IN_0\}$ [/mm] Überabzählbar ist. </task>
Hallo, wir behandeln im Studium gerade Folgen und Grenzwerte mit denen ich auch ganz gut klar kommen. Vor dem Thema haben wir Abzählbarkeit behandelt und da haperte es bei mir noch ein bisschen mit dem Verständnis.

Klar ist für mich bisher, dass eine Abbildung auf die Menge U dann Abzählbar ist, wenn [mm] $f:\IN \to [/mm] U$ surjektiv ist.
Also muss ich für meine Menge aus a) zeigen:
[mm] $f:\IN \to \{f : \IN_0 \to \IN_0 , f(n) = 0\}$ [/mm] ist surjektiv. Schwierigkeiten bereitet mir jetzt vorzustellen was f(n)=0 ist. Ich nehme an, es sind beliebige Funktionen die an einer beliebigen Stelle n gleich 0 sind. Wäre das soweit richtig, stellt sich die Frage warum bildet die Funktion dann von $f : [mm] \IN_0 \to \IN_0$ [/mm] ab? Ich hoffe ich bin nicht total auf dem Holzweg und wäre für jeden Tipp dankbar!
Gruß vom Peter

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abzählbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:58 Fr 04.11.2011
Autor: fred97


> a) Beweisen Sie, dass die Menge [mm]\{f : \IN_0 \to \IN_0 , f(n) = 0\}[/mm]
> für fast alle n Abzählbar  ist.

Die Menge hast Du völlig vermukst dargestellt.

Richtig:  [mm]M: = \{f : \IN_0 \to \IN_0 , f(n) = 0 ~ fuer ~fast ~alle ~n \in \IN\}[/mm]

Das bedeutet:

      
f [mm] \in [/mm] M  [mm] \gdw [/mm]  es gibt ein n=n(f) [mm] \in \IN [/mm] mit: f(n)=0 für alle n [mm] \ge [/mm] n(f)

FRED

>  b) Beweisen Sie, dass die Menge [mm]\{f : \IN_0 \to \IN_0\}[/mm]
> Überabzählbar ist.
>  Hallo, wir behandeln im Studium gerade Folgen und
> Grenzwerte mit denen ich auch ganz gut klar kommen. Vor dem
> Thema haben wir Abzählbarkeit behandelt und da haperte es
> bei mir noch ein bisschen mit dem Verständnis.
>  
> Klar ist für mich bisher, dass eine Abbildung auf die
> Menge U dann Abzählbar ist, wenn [mm]f:\IN \to U[/mm] surjektiv
> ist.
>  Also muss ich für meine Menge aus a) zeigen:
>  [mm]f:\IN \to \{f : \IN_0 \to \IN_0 , f(n) = 0\}[/mm] ist
> surjektiv. Schwierigkeiten bereitet mir jetzt vorzustellen
> was f(n)=0 ist. Ich nehme an, es sind beliebige Funktionen
> die an einer beliebigen Stelle n gleich 0 sind. Wäre das
> soweit richtig, stellt sich die Frage warum bildet die
> Funktion dann von [mm]f : \IN_0 \to \IN_0[/mm] ab? Ich hoffe ich bin
> nicht total auf dem Holzweg und wäre für jeden Tipp
> dankbar!
>  Gruß vom Peter
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]