matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationAbtasttheorem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Fourier-Transformation" - Abtasttheorem
Abtasttheorem < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abtasttheorem: Verständnisfragen
Status: (Frage) beantwortet Status 
Datum: 14:26 Mo 21.01.2008
Autor: Bastiane

Hallo zusammen!

In der Vorlesung haben wir folgendes aufgeschrieben:

[Dateianhang nicht öffentlich]

Bei dem Satz weiß ich schon nicht, was der mir sagen soll!? Wofür ist der gut?
Und dann diese drei Fälle: das ist doch eigentlich nochmal genau das Abtasttheorem - wenn [mm] T=\frac{1}{\Omega} [/mm] gilt, ist das Signal rekonstruierbar, wenn T noch kleiner ist, erst recht, und wenn T größer ist, dann entstehen Alias-Effekte. Aber was steht da noch? Oder wieso ist das über den Satz da drüber ausgedrückt (zumindest das erste)?

[Dateianhang nicht öffentlich]

Und diese lange Rechnung ist wohl nur dafür da, um das Fazit zu zeigen, oder? Aber was genau besagt dieses Fazit? Irgendwie verstehe ich überhaupt nicht, was das Ganze mir sagen soll... [kopfkratz]

In einem Skript finde ich im Anschluss daran noch folgende Folie:

[Dateianhang nicht öffentlich]

Wie kommt man auf diese Zeichnung? Was das aussagen soll, verstehe ich glaube ich: die Frequenzen, die größer als [mm] $|\Omega|$ [/mm] sind, werden quasi "reingeklappt", so dass kleinere Frequenzen darstellen als sie eigentlich sind, und man sie nicht von den originalen kleineren Frequenzen unterscheiden kann, und das ist dann genau der Alias-Effekt. Aber wie man auf die Zeichnung kommt, ist mir ein Rätsel...

Wäre super, falls da jemand ein bisschen bescheid wüsste und mir das ein bisschen mit eigenen Worten erklären könnte. :-)

Viele Grüße
Bastiane
[cap]




Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
Anhang Nr. 3 (Typ: png) [nicht öffentlich]
        
Bezug
Abtasttheorem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Do 24.01.2008
Autor: rainerS

Hallo Bastiane!

Es geht hier darum herauszufinden, was passiert, wenn man mit zu kleiner Frequenz abtastet. Ich mache mir das immer an Hand der Digitalisierung analoger Musik klar: wenn die Musik Frequenzen bis 20kHz enthält, was passiert, wenn ich nur mit 15kHz abtaste?

> Und diese lange Rechnung ist wohl nur dafür da, um das
> Fazit zu zeigen, oder? Aber was genau besagt dieses Fazit?
> Irgendwie verstehe ich überhaupt nicht, was das Ganze mir
> sagen soll... [kopfkratz]

Die entscheidende Aussage ist der Zusammenhang zwischen der Funktion [mm]\hat{g}(\omega)[/mm] und der Funktion [mm]\hat{f}(\omega)[/mm]. [mm]\hat{g}[/mm] ist die Fouriertransformierte von [mm]f(k*T)[/mm], der abgetasteten Funktion. [mm]\hat{f}[/mm] ist die Fouriertransformierte des ursprünglichen Signals.

Die Fouriertransformierte [mm]\hat{f}[/mm] gibt das Frequenzspektrum der Originalfunktion an, also welche Frequenzen überlagert wurden, um das Signal zu erzeugen. Die Funktion f enthält Frequenzen bis hoch zu [mm]\Omega'[/mm] ([mm]\Omega'[/mm]-bandgbeschränkt). Die abgetastete Funktion enthält nur Frequenzen bis zu [mm]\Omega<\Omega'[/mm].

Mit anderen Worten: die Frequenzen oberhalb von [mm]\Omega[/mm] gehen bei der Abtastung verloren; die Abtastung wirkt wie ein Tiefpass.

Was aber passiert mit den Anteilen des Signals mit Frequenzen oberhalb von [mm]\Omega[/mm]? Die verschwinden ja nicht einfach, sondern sie werden durch die Abtastung nicht korrekt erfasst. Die Antwort gibt dir die Formel

[mm] \hat{g}(\omega) = \begin{cases} \hat{f}(\omega-2\Omega) + \hat{f}(\omega) + \hat{f}(\omega+2\Omega) & |\omega|\le\Omega \\ 0 & \text{sonst} \end{cases} [/mm]

Der mittlere Summand [mm]\hat{f}(\omega)[/mm] ist klar, das ist der Anteil des Signals, der korrekt abgetastet wird.

Für [mm]|\omega|\le\Omega[/mm] liegt ja [mm] \omega-2\Omega [/mm] zwischen [mm]-3\Omega[/mm] und [mm]-\Omega[/mm], und [mm] \omega+2\Omega [/mm] zwischen [mm]\Omega[/mm] und [mm]3\Omega[/mm]. Es handelt sich also um die Anteile des Signals mit Frequenzen zwischen [mm]\Omega[/mm] und [mm]3\Omega[/mm]. Da f [mm]\Omega'[/mm]-bandbeschränkt und [mm]\Omega'<3\Omega[/mm] ist, geht es hier um die Frequenzen zwischen [mm]\Omega[/mm] und [mm]\Omega'[/mm].

Diese Anteile werden um [mm]\pm2\Omega[/mm] verschoben und zu [mm]\hat{f}(\omega)[/mm] dazuaddiert. Diese zu hohen Frequenzen erscheinen also im abgetasteten Signal [mm]\pm2\Omega[/mm] verschoben.

Genau das sagt die Zeichnung aus: die beiden "Schwänze" der Frequenzverteilung werden zu niedrigen Frequenzen verschoben.

Nimm eine Sinusschwingung von [mm]\Omega'=[/mm]20kHz, die du mit [mm]2\Omega=[/mm]15kHz abtastest. Die Aussage hier ist, dass sie in der abgetasteten Version aussieht wie eine Sinusschwingung von 5kHz. Eine Schwingung von 25kHz erscheint durch die Abtastung wie 10kHz.

Viele Grüße
   Rainer

Bezug
                
Bezug
Abtasttheorem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:13 Fr 25.01.2008
Autor: Bastiane

Hallo Rainer!

Vielen Dank - ich glaube, jetzt ist mir einiges klar geworden. Auch zusammen mit deiner anderen Antwort. :-)
  

> > Und diese lange Rechnung ist wohl nur dafür da, um das
> > Fazit zu zeigen, oder? Aber was genau besagt dieses Fazit?
> > Irgendwie verstehe ich überhaupt nicht, was das Ganze mir
> > sagen soll... [kopfkratz]
>  
> Die entscheidende Aussage ist der Zusammenhang zwischen der
> Funktion [mm]\hat{g}(\omega)[/mm] und der Funktion [mm]\hat{f}(\omega)[/mm].
> [mm]\hat{g}[/mm] ist die Fouriertransformierte von [mm]f(k*T)[/mm], der
> abgetasteten Funktion. [mm]\hat{f}[/mm] ist die
> Fouriertransformierte des ursprünglichen Signals.

Ich habe das jetzt so verstanden, dass wir die Fouriertransformierten brauchen, um zu sehen, warum die Aliasing-Effekte entstehen, denn die Fouriertransformierten geben uns ja die enthaltenen Frequenzen an. Deswegen berechnen wir diese und stellen dann fest, warum einige Frequenzen "sich als andere ausgeben". :-)
Aber dass am Ende f(kT)=g(kT) ist, ist das nur ein Nebeneffekt? Oder soll das irgendwie zeigen, dass man zwar das Ausgangssignal f rekonstruieren könnte, es aber keine korrekte Rekonstruktion ist - aber das macht glaube ich auch irgendwie keinen Sinn. [kopfkratz]

Viele Grüße
Bastiane
[cap]

Bezug
                        
Bezug
Abtasttheorem: Original und Fälschung
Status: (Antwort) fertig Status 
Datum: 00:23 Fr 25.01.2008
Autor: rainerS

Hallo Bastiane!

>  Aber dass am Ende f(kT)=g(kT) ist, ist das nur ein
> Nebeneffekt? Oder soll das irgendwie zeigen, dass man zwar
> das Ausgangssignal f rekonstruieren könnte, es aber keine
> korrekte Rekonstruktion ist - aber das macht glaube ich
> auch irgendwie keinen Sinn. [kopfkratz]

Vorsicht! Du darfst nicht f(kT) mit der Funktion f(t) verwechseln. f(kT) ist das abgetastete Signal, denn kT nimmt nur endlich viele Werte an. Wenn du mit 15kHz abtastest, misst du den Wert der Funktion f jede fünfzehntausendstel Sekunde einmal. f(kT)=g(kT) sagt nur, dass die Werte von f und g zu diesen endlich vielen Zeiten übereinstimmen. Du kannst nur das Signal g(t) rekonstruieren, nicht aber f(t).

Anders ausgedrückt: f(kT)=g(kT)  weil sich f und g nur in den hohen Frequenzen oberhalb von [mm]\Omega[/mm] unterscheiden.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]