matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelAbstandsberechnung (Ebenen)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Längen, Abstände, Winkel" - Abstandsberechnung (Ebenen)
Abstandsberechnung (Ebenen) < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstandsberechnung (Ebenen): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Mo 15.05.2006
Autor: Mazemaniac

Aufgabe 1
Zeigen Sie, dass die Ebenen E und F zueinander parallel sind, Berechnen Sie Ihren Abstand.

E: [mm] \overrightarrow{x} [/mm] =  [mm] \pmat{ 2 \\ 3 \\ 5 } [/mm] + r [mm] \pmat{ 1 \\ 1 \\ 0} [/mm] + [mm] s\pmat{ 0 \\ 1 \\ 2} [/mm]

F: [mm] \overrightarrow{x} [/mm] =  [mm] \pmat{ 1 \\ 3 \\ 7} [/mm] + r [mm] \pmat{ 1 \\ 2 \\ 2} [/mm] + [mm] s\pmat{ 2 \\ 5 \\ 6} [/mm]  


Aufgabe 2
Gegeben sind die Ebenen E:  [mm] x_{1} [/mm] + [mm] 3x_{2} [/mm] -  [mm] 2x_{3} [/mm] = 0 und die Punkte A (0|2|0) und B (5|-1|-2).

a) Zeigen Sie, dass die gerade A und B paralel zu E ist.
b) Bestimmen Sie den Abstand der Punkte der Geraden durch A und B zur Ebene E.

Ho, ich weiß ist relativ viel, war aber die letzen Wochen krank und kann das daher nicht. Die Aufgaben sollen wohl mit Hilfe von Formeln, in denen die Hessesche Normalenform eine Rolle spielt gelöst werden können. Wenn möglich einigermaßen ausführlich beschreiben was zu tun ist und wie der Rechenweg lautet. Ihr helft mir auch schon sehr, wenn ihr nur eine Teilaufgabe löst.


Gruß

Matze

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abstandsberechnung (Ebenen): Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Mo 15.05.2006
Autor: Disap

Moin Mazemaniac, herzlich [willkommenmr]

> Zeigen Sie, dass die Ebenen E und F zueinander parallel
> sind, Berechnen Sie Ihren Abstand.
>
> E: [mm]\overrightarrow{x}[/mm] =  [mm]\pmat{ 2 \\ 3 \\ 5 }[/mm] + r [mm]\pmat{ 1 \\ 1 \\ 0}[/mm]
> + [mm]s\pmat{ 0 \\ 1 \\ 2}[/mm]
>
> F: [mm]\overrightarrow{x}[/mm] =  [mm]\pmat{ 1 \\ 3 \\ 7}[/mm] + r [mm]\pmat{ 1 \\ 2 \\ 2}[/mm]
> + [mm]s\pmat{ 2 \\ 5 \\ 6}[/mm]

Dass Ebenen zueinander parallel sind, kannst du zeigen, indem du von der Ebene E und Ebene F den Normalenvektor mit Hilfe des Vektor- oder Kreuzprodukts bildest. Ist der Normalenvektor [mm] n_E [/mm] nun linear abhängig von [mm] n_F, [/mm] so sind die Ebenen parallel.
Wenn die die Ebene E zur Ebene F parallel ist, dann spielt es keine Rolle, welchen Punkt der Ebene E du nimmst, um den Abstand zur Ebene F zu bestimmen.
Das Problem lässt sich auf das Kochrezept: Abstand Punkt - Ebene (Hessesche Normalenform) zurückführen. Als Punkt nimmst du z. B. den Ortsvektor der Ebene E. (Darfst natürlich auch den der Ebene F nehmen)


> Gegeben sind die Ebenen E:  [mm]x_{1}[/mm] + [mm]3x_{2}[/mm] -  [mm]2x_{3}[/mm] = 0
> und die Punkte A (0|2|0) und B (5|-1|-2).
> a) Zeigen Sie, dass die gerade A und B paralel zu E ist.

Hier musst du die Geradengleichung aufstellen

[mm] $g:\vec{x}=\overline{0A}+\lambda \overline{AB}$ [/mm]

Der Normalenvektor [mm] n_L [/mm] (so nenne ich ihn einfach mal für die Aufgabe) der Ebene muss den Richtungsvektor [mm] \vec{u} [/mm] der Geraden senkrecht schneiden. Das zeigst du mit Hilfe des Skalarprodukts, es muss gelten:

[mm] $\vec{n_L}\cdot \vec{u} [/mm] = 0$

>  b) Bestimmen Sie den Abstand der Punkte der Geraden durch
> A und B zur Ebene E.

Dann nimmst du auch einfach wieder einen Punkt der Geraden (z. B. den Ortsvektor - den kann man ja leicht ablesen) und berechnest den Abstand zur Ebene [mm] \Rightarrow [/mm] Abstand Punkt - Ebene.
Du könntest auch einen beliebigen Punkt der Ebene nehmen und dann den Abstand des Punktes zur Geraden berechnen: Problem - Abstand Punkt-Gerade.

>  Ho, ich weiß ist relativ viel, war aber die letzen Wochen
> krank und kann das daher nicht. Die Aufgaben sollen wohl

Ich hoffe, du bist nun wieder gesund.

> mit Hilfe von Formeln, in denen die Hessesche Normalenform
> eine Rolle spielt gelöst werden können. Wenn möglich
> einigermaßen ausführlich beschreiben was zu tun ist und wie
> der Rechenweg lautet. Ihr helft mir auch schon sehr, wenn
> ihr nur eine Teilaufgabe löst.

Falls etwas unklar geblieben ist, kannst du gerne noch einmal nachfragen. Nachrechnen tu ich es gerne, aber vorrechnen eher nicht.

> Gruß
>  
> Matze
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

Disap

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]