matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelAbstand zwischen P und Dreieck
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Längen, Abstände, Winkel" - Abstand zwischen P und Dreieck
Abstand zwischen P und Dreieck < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand zwischen P und Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Mo 10.03.2008
Autor: brichun

Aufgabe
Die Punkte des dreicks ABC A=(5,0,1) B=(3,2,0) C=(0,-1,2). Berechne den kürzesten Abstand zum Punkt P=(4,2,-1).

hallo zusammen,

Also ich hab erst mal die Ebenengleichung des Dreicks aufgestellt.

n*(rc-ra)=0  

rc = Ortsvektor vom Punkt C
ra = Ortsvektor vom Punkt A

x(3-5)+y(2-0)+z(0-1)=0
E: -2x+2y+z=0

da war ich mir nicht sicher da ja eigentlich die Koordiaten xyz vom Normalenvektor sind.

der Vormalenvektor => n=(-2,2,1)

hab dann d=[mm] \bruch{\left[ n*np \right]}{\left[ n \right]} [/mm]

np= Vektor von Normale zum Punkt

d=[mm] \bruch{2}{\wurzel{8}} [/mm]

das stimmt aber nicht mit der Lösung überein was ist daran falsch?

Danke für die Hilfe

Grüßle
Brichun



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abstand zwischen P und Dreieck: Geht so nicht
Status: (Antwort) fertig Status 
Datum: 12:30 Mo 10.03.2008
Autor: statler

Hi, [willkommenmr]

> Die Punkte des Dreicks ABC A=(5,0,1) B=(3,2,0) C=(0,-1,2).
> Berechne den kürzesten Abstand zum Punkt P=(4,2,-1).

> Also ich hab erst mal die Ebenengleichung des Dreicks
> aufgestellt.
>  
> n*(rc-ra)=0  

Wo kommt denn das her?

> rc = Ortsvektor vom Punkt C
> ra = Ortsvektor vom Punkt A
>  
> x(3-5)+y(2-0)+z(0-1)=0
>  E: -2x+2y+z=0

Wenn du die Koordinaten der Eckpunkte einsetzt, siehst du sofort, daß A und B nicht in dieser Ebene liegen. Mein Vorschlag wäre, mit Stütz- und Spannvektoren zu arbeiten und dann zur Koordinatenform überzugehen.

Wenn du das Kreuzprodukt kennst, kannst du auch sofort direkt einen Normalenvektor berechnen.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Abstand zwischen P und Dreieck: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:17 Mo 10.03.2008
Autor: brichun

vielen dank es hat jetzt funktioniert.

1)     AB = (-2,2,0) AC=(-5,-1,1)
2)    Normalenvektor (n)= AB  x AC    n=(1,7,12)
3)    AP = (-1,2,-2)

4)     d=[mm] \bruch{\left[ n*AB \right]}{\left[ n \right]} [/mm]
5)     d=[mm] \bruch{11}{\wurzel{194}} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]