matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelAbstand zweier parallen Gerade
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Längen, Abstände, Winkel" - Abstand zweier parallen Gerade
Abstand zweier parallen Gerade < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand zweier parallen Gerade: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:48 Sa 21.06.2008
Autor: Jule_

Aufgabe
Berechnen Sie den Abstand der zueinader parallelen Geraden mit den Gleichungen:


[mm] \vec{x_1}=\vektor{-5\\ 6 \\ 8}+t*\vektor{1\\ 0 \\ -2} [/mm]
[mm] \vec{x_2}=\vektor{6\\ 4 \\ 1}+t*\vektor{-1\\ 0 \\ 2} [/mm]



Ich hatte gedacht ich könnte ja einfach den Abstand der Beiden Ortsvektoren berechnen:

[mm] \vektor{-5-6\\ 6-4 \\ 8-1}=\vektor{-11\\ 2 \\ 7} [/mm]
und den Betrag berechnen, aber leider komme ich damit nicht auf das angegeben Ergebnis.

Wieso geht das so nicht? Wie geht es dann?



        
Bezug
Abstand zweier parallen Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Sa 21.06.2008
Autor: angela.h.b.


> Berechnen Sie den Abstand der zueinader parallelen Geraden
> mit den Gleichungen:
>  
>
> [mm]\vec{x_1}=\vektor{-5\\ 6 \\ 8}+t*\vektor{1\\ 0 \\ -2}[/mm]
>  
> [mm]\vec{x_2}=\vektor{6\\ 4 \\ 1}+t*\vektor{-1\\ 0 \\ 2}[/mm]
>  
>
>
> Ich hatte gedacht ich könnte ja einfach den Abstand der
> Beiden Ortsvektoren berechnen:
>  
> [mm]\vektor{-5-6\\ 6-4 \\ 8-1}=\vektor{-11\\ 2 \\ 7}[/mm]
>  und den
> Betrag berechnen, aber leider komme ich damit nicht auf das
> angegeben Ergebnis.
>  
> Wieso geht das so nicht?

Hallo,

mal Dir auf ein Zettelchen mal zwei parallele Geraden, markiere auf jeder der Geraden einen Punkt.

Wenn Du nun die beiden Punkte verbindest, hast Du sehr wahrscheinlich einen Verbindungsvektor zwischen beiden, der nicht senkrecht auf den Geraden steht. Der Abstand wäre aber die Länge der senkrechten Verindung zwischen zwei Geradenpunkten.


>  Wie geht es dann?

Du könntest die Gleichung der Ebene, die durch [mm] \vektor{-5\\ 6 \\ 8} [/mm] geht und senkrecht zu den beiden Geraden ist, aufstellen, und dann ihren Schnittpunkt mit der zweiten Geraden berechnen.

Die Länge des Verbindungsvektors zwischen dem Schnittpunkt und [mm] \vektor{-5\\ 6 \\ 8} [/mm] wäre dann der Abstand der beiden Geraden.

Gruß v. Angela

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]