matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelAbstand windschiefer Geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Längen, Abstände, Winkel" - Abstand windschiefer Geraden
Abstand windschiefer Geraden < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand windschiefer Geraden: Extremwertaufgabe
Status: (Frage) beantwortet Status 
Datum: 19:31 Mo 04.06.2007
Autor: JanW1989

Aufgabe
Gegeben sind die Geraden g: [mm] \vec{x} [/mm] = [mm] \vektor{2\\1\\1} [/mm] + [mm] \lambda [/mm] * [mm] \vektor{1\\-1\\0} [/mm] und h: [mm] \vec{x} [/mm] = [mm] \vektor{2\\-1\\0} [/mm] + [mm] \mu [/mm] * [mm] \vektor{4\\0\\-1} [/mm]
Berechne den Abstand der Geraden nach folgendem Verfahren:
(1) Bestimme den Abstand zweier beliebiger Punkte X bzw. Y die auf g bzw. h liegen.
(2) Bestimme zu einem beliebigen aber festen Punkt Y der Geraden h denjenigen Punkt X* der Geraden g, der von Y die kleinste Entfernung hat.
Warum ist beim Bilden der Ableitung der Parameter [mm] \mu [/mm] als konstant anzusehen?
(3) Zeige |X*Y| = [mm] \wurzel{9\mu²-6\mu+3} [/mm]
(4) Berechne nun das Minumum der Funktion f mit [mm] f(\mu) [/mm] = |X*Y|.
(5) Zeige: Man erhält das selbe Ergebnis wenn man zuerst den Punkt X "festhält".
(6) Die Funktionen f und g mit [mm] g(\mu) [/mm] = [mm] (f(\mu))² [/mm] nehmen an der selben Stelle ihre Minima an. Dies erleichtert die Rechnung in (4). Entsprechendes gilt für (2).

Hallo,
Mein Probleme beginnt schon bei dem ersten Teil. Ich erhalte einen sehr langen Wurzelterm für den Betrag eines beliebigen Vektors zwischen g und h:
[mm] \wurzel{2\mu²+2\lambda²+3-4\lambda-4\mu} [/mm]
Mit ein wenig Hilfe bei diesem ersten Teil wäre mir wahrscheinlich schon sehr gut geholfen ! Vielen, Vielen Dank schon mal !
MfG Jan
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abstand windschiefer Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Mo 04.06.2007
Autor: Kroni


> Gegeben sind die Geraden g: [mm]\vec{x}[/mm] = [mm]\vektor{2\\1\\1}[/mm] +
> [mm]\lambda[/mm] * [mm]\vektor{1\\-1\\0}[/mm] und h: [mm]\vec{x}[/mm] =
> [mm]\vektor{2\\-1\\0}[/mm] + [mm]\mu[/mm] * [mm]\vektor{4\\0\\-1}[/mm]
>  Berechne den Abstand der Geraden nach folgendem
> Verfahren:
>  (1) Bestimme den Abstand zweier beliebiger Punkte X bzw. Y
> die auf g bzw. h liegen.
>  (2) Bestimme zu einem beliebigen aber festen Punkt Y der
> Geraden h denjenigen Punkt X* der Geraden g, der von Y die
> kleinste Entfernung hat.
>  Warum ist beim Bilden der Ableitung der Parameter [mm]\mu[/mm] als
> konstant anzusehen?
>  (3) Zeige |X*Y| = [mm]\wurzel{9\mu²-6\mu+3}[/mm]
>  (4) Berechne nun das Minumum der Funktion f mit [mm]f(\mu)[/mm] =
> |X*Y|.
>  (5) Zeige: Man erhält das selbe Ergebnis wenn man zuerst
> den Punkt X "festhält".
>  (6) Die Funktionen f und g mit [mm]g(\mu)[/mm] = [mm](f(\mu))²[/mm] nehmen
> an der selben Stelle ihre Minima an. Dies erleichtert die
> Rechnung in (4). Entsprechendes gilt für (2).
>  Hallo,
>  Mein Probleme beginnt schon bei dem ersten Teil. Ich
> erhalte einen sehr langen Wurzelterm für den Betrag eines
> beliebigen Vektors zwischen g und h:
>  [mm]\wurzel{2\mu²+2\lambda²+3-4\lambda-4\mu}[/mm]
>  Mit ein wenig Hilfe bei diesem ersten Teil wäre mir
> wahrscheinlich schon sehr gut geholfen ! Vielen, Vielen
> Dank schon mal !
>  MfG Jan
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Hi.

Als erstes bilden wir mal den Verbindungsvektor zwischen den Vektoren [mm] \vec{x} [/mm] und [mm] \vec{y}. [/mm]

Für [mm] \vec{x} [/mm] gilt die Geradengleichung g und für [mm] \vec{y} [/mm] die von h.

Dann gilt für den Verbindungsvektor der beiden: [mm] \vec{x}-\vec{y}: [/mm]

Dann komme ich auf [mm] \vektor{\lambda-4\mu\\2-\lambda\\1+\mu} [/mm]

Jetzt hiervon der Betrag, so dass man den Abstand des Verbindungsvektors sieht:

[mm] d=\wurzel{2\lambda^2+17\mu^2-4\lambda+2\mu-8\lambda\mu+5} [/mm]

Mit diesem Ergebnis kannst du dann weiterrechnen, und hiervon z.B. das Minimum suchen.
Dabei bitte den Tip in Aufgabe 6) beachten.

LG

Kroni


Bezug
                
Bezug
Abstand windschiefer Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:33 Mo 04.06.2007
Autor: JanW1989

Hey :)
Jetzt hab ich die Aufgabe komplett lösen können ! Vielen Dank ! Mein Problem war, dass ich einen Richtungsvektor falsch vom Aufgabenblatt abgeschrieben habe :-/ Aber jetzt hab ichs ja hinbekommen ! Dankeschön !
Bye

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]