matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAbstand eines Untervektorraums vom R^4
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Abstand eines Untervektorraums vom R^4
Abstand eines Untervektorraums vom R^4 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand eines Untervektorraums vom R^4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 So 27.06.2004
Autor: luck0r

Ich soll den beliebigen Abstand eines durch 2 Vektoren erzeugten UVRs vom [mm] R^4 [/mm] berechnen, weiss aber überhaubt nicht, wo ich ansetzen soll.

Vielleicht kann mir ja jemand durch ein geschicktes Beispiel weiterhelfen, ich würde mich sehr freuen.

Die Aufgabe:

Im euklidischen Standardraum [mm] R^4 [/mm] seien die Vektoren
[mm] u1:=\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} u2:=\begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix} [/mm]
gegeben. Es sei U der von u1, u2 erzeugte Untervektorraum.
Berechnen Sie für beliebiges x [mm] \in R^4 [/mm] den Abstand d(x,U).

Grüße
luck0r

Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
Abstand eines Untervektorraums vom R^4: Antwort
Status: (Antwort) fertig Status 
Datum: 23:29 So 27.06.2004
Autor: Stefan

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo!

Zunächst müssen wir in $U$ einmal eine Orthonormalbasis $(\tilde{u}_1},\tilde{u}_2)$ finden (nach Gram-Schmidt).

Es gilt:

$\tilde{u}_1 = \frac{1}{\Vert u_1 \Vert} u_1 = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\1 \\ 1 \end{pmatrix}$

und

$\tilde{u}'_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix} - < \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} , \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix} > \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$

$= \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix} - 3 \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$

$= \begin{pmatrix} -\frac{3}{2} \\ - \frac{1}{2} \\ \frac{1}{2} \\ \frac{3}{2} \end{pmatrix}$,

$\tilde{u}_2 = \frac{\tilde{u}'_2}{\Vert \tilde{u}'_2 \Vert}$.

Es sei  nun $x \in \IR^4$ beliebig vorgegeben. Dann ist die orthogonale Projektion von $x$ auf $U$ bekanntlich gegeben durch

(*) $P_U(x):= <x,\tilde{u}_1> \tilde{u}_1 + <x,\tilde{u}_2> \tilde{u}_2$

und der Abstand von $x$ zu $U$ ist entsprechend:

(**) $d(x,U)= \Vert x - P_U(x)\Vert$.

Jetzt kannst du ja noch $\tilde{u}_1$ und $\tilde{u}_2$ in (*) und das Ergebnis $P_U(x)$ dann noch in (**) einsetzen und du bist fertig. :-)

Melde dich bitte mit einem Lösungsvorschlag oder bei weiteren Fragen.

Liebe Grüße
Stefan

Bezug
                
Bezug
Abstand eines Untervektorraums vom R^4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:34 Mo 28.06.2004
Autor: luck0r

vielen Dank, du hast mir den Abend gerettet :P

Wenn ich [mm] $\tilde{u}_2$ [/mm] noch normiere und bisserl rechne komme ich dann auf:
[mm] d(x,U)= \Vert x - \pi_U(x)\Vert = \Vert \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} - (\frac{1}{4}x_1+\frac{1}{4}x_2+\frac{1}{4}x_3+\frac{1}{4}x_4) * \begin{pmatrix} 1 \\ 1 \\1 \\ 1 \end{pmatrix} -(\frac{3}{20}x_1 - \frac{1}{20}x_2 + \frac{1}{20}x_3 + \frac{3}{20}x_4) * \begin{pmatrix} -3 \\ - 1 \\ 1 \\ 3 \end{pmatrix} \Vert [/mm]

Wäre korrekt, wenn das noch kurz jemand verifizieren könnte :)

Grüße und nochmal vielen Dank
luck0r


Bezug
                        
Bezug
Abstand eines Untervektorraums vom R^4: Antwort
Status: (Antwort) fertig Status 
Datum: 10:02 Mo 28.06.2004
Autor: Stefan

Hallo luck0r!

> vielen Dank, du hast mir den Abend gerettet :P
>  
> Wenn ich [mm]\tilde{u}_2[/mm] noch normiere

Stimmt, sorry, habe ich jetzt noch nachträglich verbessert.

> und bisserl rechne komme
> ich dann auf:
>  [mm]d(x,U)= \Vert x - \pi_U(x)\Vert = \Vert \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} - (\frac{1}{4}x_1+\frac{1}{4}x_2+\frac{1}{4}x_3+\frac{1}{4}x_4) * \begin{pmatrix} 1 \\ 1 \\1 \\ 1 \end{pmatrix} -(\frac{3}{20}x_1 - \frac{1}{20}x_2 + \frac{1}{20}x_3 + \frac{3}{20}x_4) * \begin{pmatrix} -3 \\ - 1 \\ 1 \\ 3 \end{pmatrix} \Vert[/mm]

[ok] [super]

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]