Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft
Für
Schüler
,
Studenten
, Lehrer, Mathematik-Interessierte.
Hallo Gast!
[
einloggen
|
registrieren
]
Startseite
·
Forum
·
Wissen
·
Kurse
·
Mitglieder
·
Team
·
Impressum
Forenbaum
Forenbaum
Hochschulmathe
Uni-Analysis
Reelle Analysis
UKomplx
Uni-Kompl. Analysis
Differentialgl.
Maß/Integrat-Theorie
Funktionalanalysis
Transformationen
UAnaSon
Uni-Lin. Algebra
Abbildungen
ULinAGS
Matrizen
Determinanten
Eigenwerte
Skalarprodukte
Moduln/Vektorraum
Sonstiges
Algebra+Zahlentheo.
Algebra
Zahlentheorie
Diskrete Mathematik
Diskrete Optimierung
Graphentheorie
Operations Research
Relationen
Fachdidaktik
Finanz+Versicherung
Uni-Finanzmathematik
Uni-Versicherungsmat
Logik+Mengenlehre
Logik
Mengenlehre
Numerik
Lin. Gleich.-systeme
Nichtlineare Gleich.
Interpol.+Approx.
Integr.+Differenz.
Eigenwertprobleme
DGL
Uni-Stochastik
Kombinatorik
math. Statistik
Statistik (Anwend.)
stoch. Analysis
stoch. Prozesse
Wahrscheinlichkeitstheorie
Topologie+Geometrie
Uni-Sonstiges
Gezeigt werden alle Foren bis zur Tiefe
2
Navigation
Startseite
...
Neuerdings
beta
neu
Forum
...
vor
wissen
...
vor
kurse
...
Werkzeuge
...
Nachhilfevermittlung
beta
...
Online-Spiele
beta
Suchen
Verein
...
Impressum
Das Projekt
Server
und Internetanbindung werden durch
Spenden
finanziert.
Organisiert wird das Projekt von unserem
Koordinatorenteam
.
Hunderte Mitglieder
helfen ehrenamtlich in unseren
moderierten
Foren
.
Anbieter der Seite ist der gemeinnützige Verein "
Vorhilfe.de e.V.
".
Partnerseiten
Weitere Fächer:
Vorhilfe.de
FunkyPlot
: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Startseite
>
MatheForen
>
Geraden und Ebenen
>
Abstand beider Ebenen
Foren für weitere Studienfächer findest Du auf
www.vorhilfe.de
z.B.
Astronomie
•
Medizin
•
Elektrotechnik
•
Maschinenbau
•
Bauingenieurwesen
•
Jura
•
Psychologie
•
Geowissenschaften
Forum "Geraden und Ebenen" - Abstand beider Ebenen
Abstand beider Ebenen
<
Geraden und Ebenen
<
Lin. Algebra/Vektor
<
Oberstufe
<
Schule
<
Mathe
<
Vorhilfe
Ansicht:
[ geschachtelt ]
|
Forum "Geraden und Ebenen"
|
Alle Foren
|
Forenbaum
|
Materialien
Abstand beider Ebenen: Frage (reagiert)
Status
:
(Frage) reagiert/warte auf Reaktion
Datum
:
18:32
Mi
23.04.2008
Autor
:
franzi88
Aufgabe
Berechnung des Abstandes dieser beiden Ebenen
wie kann ich nun den Abstand zwischen diesen beiden Ebenen berechnen?
#
# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Bezug
Abstand beider Ebenen: HESSE'sche Normalform
Status
:
(Antwort) fertig
Datum
:
18:36
Mi
23.04.2008
Autor
:
Loddar
Hallo franzi!
Um welche beiden Ebenen geht es denn? Und was kennst Du denn für Ebenenformen?
Bringe beide Ebenen in die HESSE'sche Normalform. Dann kannst Du jeweils den Abstand zum Urspung "ablesen" und daraus den Abstand untereinander ermitteln.
Gruß
Loddar
Bezug
Ansicht:
[ geschachtelt ]
|
Forum "Geraden und Ebenen"
|
Alle Foren
|
Forenbaum
|
Materialien
www.unimatheforum.de
[
Startseite
|
Forum
|
Wissen
|
Kurse
|
Mitglieder
|
Team
|
Impressum
]