matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteAbstand Vektor <-> Vektorraum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Skalarprodukte" - Abstand Vektor <-> Vektorraum
Abstand Vektor <-> Vektorraum < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Vektor <-> Vektorraum: im R^5
Status: (Frage) beantwortet Status 
Datum: 11:36 Di 07.07.2015
Autor: Ceriana

Aufgabe
Sei [mm] \|\cdot\|_{2} [/mm] die Euklidische Norm auf [mm] \IR^5. [/mm] Die Distanz zwischen einem Vektor v [mm] \in [/mm] V und einem Unterraum U [mm] \subset R^n [/mm] ist definiert durch d(v,U) = [mm] min\|v-u\|_{2} [/mm] (u [mm] \in [/mm] U). Es seien v  := [mm] (2,-1,0,1,1)^{T} \in R^5 [/mm] und U := [mm] \{(x_1,x_2,x_3,x_4,x_5)^{T} \in R^5 | x_1 + x_2 - x_3 + x_4 + x_5 = 0, x_1 - x_3 + x_4 = 0\}. [/mm]
Berechnen Sie d(v,U).

Hallo,

ich komme mit der Aufgabe nicht klar. Ich habe eine ungefähre Vorstellung was ich tun muss, komme aber zu keiner brauchbaren Lösung. Mein Ansatz sieht so aus:

Die Basis von U ist [mm] \{(x_1, x_2, -x_3, x_4, x_5)^{T}, (x_1, 0, -x_3, x_4, 0)^{T}\}. [/mm] Dann ist das Minimum bestimmt durch:

[mm] \min{\|(\lambda\cdot (x_1, x_2, -x_3, x_4, x_5)^{T}+\mu\cdot (x_1, 0, -x_3, x_4, 0)^{T})-(2,-1,0,1,1)^{T}\|}_2. [/mm]

Bis hierhin: Ist das schonmal richtig? Mir fehlt leider einiges Wissen im Umgang mit Basen.

Das habe ich dann einfach aufgelöst anhand der Definition der Euklidischen Norm zu:

[mm] \min{\sqrt{(\lambda\cdot x_1+\mu\cdot x_1 -2)^2+(\lambda\cdot x_2 +1)^2+(-\lambda\cdot x_3-\mu\cdot x_3)^2+(\lambda\cdot x_4+\mu\dot x_4-1)^2+(\lambda\cdot x_5-1)^2}}. [/mm]

Damit komme ich aber beim besten Willen nicht weiter. Ich gehe auch ehrlichgesagt davon aus dass ich kompletten Unfug gebaut habe, da mir wie gesagt einiges am Umgang mit Basen fehlt. Kann mir jemand einen Schubs geben?

Liebe Grüße,

Ceriana

        
Bezug
Abstand Vektor <-> Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Di 07.07.2015
Autor: fred97


> Sei [mm]\|\cdot\|_{2}[/mm] die Euklidische Norm auf [mm]\IR^5.[/mm] Die
> Distanz zwischen einem Vektor v [mm]\in[/mm] V und einem Unterraum U
> [mm]\subset R^n[/mm] ist definiert durch d(v,U) = [mm]min\|v-u\|_{2}[/mm] (u
> [mm]\in[/mm] U). Es seien v  := [mm](2,-1,0,1,1)^{T} \in R^5[/mm] und U :=
> [mm]\{(x_1,x_2,x_3,x_4,x_5)^{T} \in R^5 | x_1 + x_2 - x_3 + x_4 + x_5 = 0, x_1 - x_3 + x_4 = 0\}.[/mm]
>  
> Berechnen Sie d(v,U).
>  Hallo,
>  
> ich komme mit der Aufgabe nicht klar. Ich habe eine
> ungefähre Vorstellung was ich tun muss, komme aber zu
> keiner brauchbaren Lösung. Mein Ansatz sieht so aus:
>  
> Die Basis von U ist [mm]\{(x_1, x_2, -x_3, x_4, x_5)^{T}, (x_1, 0, -x_3, x_4, 0)^{T}\}.[/mm]
> Dann ist das Minimum bestimmt durch:
>  
> [mm]\min{\|(\lambda\cdot (x_1, x_2, -x_3, x_4, x_5)^{T}+\mu\cdot (x_1, 0, -x_3, x_4, 0)^{T})-(2,-1,0,1,1)^{T}\|}_2.[/mm]
>  
> Bis hierhin: Ist das schonmal richtig?


nein. Ich kann Dir nicht folgen

>  Mir fehlt leider
> einiges Wissen im Umgang mit Basen.
>  
> Das habe ich dann einfach aufgelöst anhand der Definition
> der Euklidischen Norm zu:
>  
> [mm]\min{\sqrt{(\lambda\cdot x_1+\mu\cdot x_1 -2)^2+(\lambda\cdot x_2 +1)^2+(-\lambda\cdot x_3-\mu\cdot x_3)^2+(\lambda\cdot x_4+\mu\dot x_4-1)^2+(\lambda\cdot x_5-1)^2}}.[/mm]
>  
> Damit komme ich aber beim besten Willen nicht weiter. Ich
> gehe auch ehrlichgesagt davon aus dass ich kompletten Unfug
> gebaut habe, da mir wie gesagt einiges am Umgang mit Basen
> fehlt. Kann mir jemand einen Schubs geben?

Es ist schwer, Dir zu helfen ! Ich bin nicht im Bilde, was Du verwenden darfst.

1. Möglichkeit: bestimme die orthogonale Projektion P: [mm] \IR^5 \to \IR^5 [/mm] auf U, also die lineare Abbildung P mit [mm] P^2=P [/mm] , Bild(P)=U und [mm] Kern(P)=U^{\perp}. [/mm]

Dann ist [mm] d(v,U)=||v-P(v)||_2 [/mm]

2. Möglichkeit: für x [mm] \in \IR^5 [/mm] sei [mm] f(x):=||v-x||_2^2 [/mm]

Gesucht ist dann das Minimum von f unter der Nebenbedingung x [mm] \in [/mm] U.

Multiplikatorenregel von Lagrange !

P.S.: es geht auch ohne Lagrange, denn ist [mm] x=(x_1,...,x_5) \in [/mm] U , so ist [mm] x_5=-x_2 [/mm] und [mm] x_4=x_3-x_1. [/mm]

FRED

FRED

>  
> Liebe Grüße,
>  
> Ceriana


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]