matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelAbstand Punkt von Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Längen, Abstände, Winkel" - Abstand Punkt von Ebene
Abstand Punkt von Ebene < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Punkt von Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:23 So 31.08.2008
Autor: RtotheT

Aufgabe
Aufgabe:
Gegeben sind die Ebene [mm] E.x_1+2x_2-x_3=6 [/mm] und die Mene aller Punkte P [mm] (p_1 [/mm] | [mm] p_2 [/mm] | [mm] p_3) [/mm] mit [mm] p_1=2r+3s; p_2=r-2s; p_3=4r-s [/mm] für alle r,s enthalten in R.
Zeigen Sie, dass alle Punkte P von Ebene E den gleichen Abstand haben
a) mithilfe der HESSE'schen Normalenform,
b) durch geometrische Überlegungen ohne Verwendung der HESSE'schen Normalenform.

Hallo,

ich wollte mal fragen, ob jemand die Zeit hat sich meine Hausaufgaben anzuschauen, wäre sehr lieb:

zu a)
[mm]d= \left| \bruch{2r+3s+2(r-2s)-4r+s-6}{\wurzel{6}} \right|[/mm]

wird zu:
[mm]d= \left| \bruch{-6}{\wurzel{6}} \right|[/mm]

Ist die Lösung korrekt?
Jedenfalls wäre meine Begründung, dass das Ergebnis unabhängig von r und s ist und deswegen alle Punkte denselben Abstand haben.


zu b)

aus den Punkten von P eine Ebene mit folg. Gleichung:


[mm] \vec x= r \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} + s \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}[/mm]

Normalenvektor der Ebene ist:
[mm] \vec n = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}[/mm]

Im Lösungsbuch werden nun die Skalarprodukte gebildet:

[mm] \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} . \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} =0[/mm]

[mm] \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix} . \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}=0[/mm]

Nach dem Lösungsbuch beweise dies nun die Parallelität der Ebene E und der Ebene durch die Punkte von P.

Aber ich dachte, dass das Skalarprodukt immer die Orthogonalität zeigt, wenn es null ergibt... Was verstehe ich hier falsch?

Außerdem wollte ich mal fragen, ob es noch andere Lösungsmöglichkeiten gäbe, da bei der Aufgabe gefragt wird, welche geometrischen Überlegungen es gäbe und ich mir einfach denke, dass es mit Sicherheit noch andere geben muss (außerdem bin ich bestimmt nicht die Einzige, die das Lösungsbuch besitzt).

Ich freue mich auf Antwort, danke!
RtotheT

        
Bezug
Abstand Punkt von Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 So 31.08.2008
Autor: Teufel

Hallo!

a) sieht mir korrekt aus, nur dass ich [mm] d=\wurzel{6}LE [/mm] einfach schreiben würde.

b)
Sagt dir das Kreuzprodukt/Vektorprodukt etwas? Du könntest damit den Normalenvektor der Ebene bestimmen, die durch die Punkteschar gegeben ist. Wenn dieser Normalenvektor ein Vielfaches des Normalenvektor der Ausgangsebene ist (also wenn beide Normalenvektoren kollinear sind), dann müsst die Ebenen parallel sein. Die Lösung in der Aufgabe verwendet den selben Ansatz, nur dass sie nicht das Kreuzprodukt berechnen, sondern 2mal ein Skalarprodukt. Kommt aber aufs selbe raus.

[anon] Teufel

Bezug
                
Bezug
Abstand Punkt von Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 So 31.08.2008
Autor: RtotheT

Hey, danke schon mal...

Aber mir ist noch etwas unklar.

Wieso kann ich bei a) einfach [mm] \wurzel{6}LE [/mm] schreiben? Was bedeutet das LE?

zu b)
Ja, mir sagt das Kreuzprodukt etwas, aber ich wusste nicht, dass das Kreuzprodukt der Richtungsvektoren bei einer Parametergleichung den Normalenvektor ergibt.
Daraus ergibt sich auch, dass es ein Vielfaches ist (7/14/-7).

Aber noch einmal zur vorgegebenen Lösung:
Wieso zeigt mir hier das Ergebnis 0 des Skalarproduktes Parallelität? Ich dachte, dass das Orthogonalität zeigt...

Lieben Gruß
RtotheT

Bezug
                        
Bezug
Abstand Punkt von Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 So 31.08.2008
Autor: Teufel

Kein Problem :)

a)
Na [mm] \bruch{6}{\wurzel{6}}=\bruch{\wurzel{6}*\wurzel{6}}{\wurzel{6}}=\wurzel{6}! [/mm] LE heißt Längeneinheiten und sollte immer da stehen, wenn es um Abstände geht! Außer du hast natürlich in Anwendungsaufgaben andere Einheiten gegeben.

b)
Ok, du hast ja die 2 Spannvektoren der Ebene, die durch die Punkteschar gebildet wird. Wenn du dir jetzt vorstellst, dass diese Ebene und die gegebene Ebene parallel sind, dann müssen entweder die Normalvektoren Vielfache voneinander sein, oder aber beide Spannvektoren der "Punktebene" müssten mit dem Normalenvektor der gegebenen Ebene einen 90-Winkel einschließen.

[Dateianhang nicht öffentlich]

Skizzen helfen da immer :) Die rote Ebene ist eben die gegebene, die blaue die, die durch die Punktschar gegeben ist.

[anon] Teufel

Dateianhänge:
Anhang Nr. 1 (Typ: GIF) [nicht öffentlich]
Bezug
                                
Bezug
Abstand Punkt von Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:45 So 31.08.2008
Autor: RtotheT

Wow, danke! Das ist wirklich sehr gut erklärt.
Das nächste Mal versuche ich zunächst selbst erst einmal eine Skizze... das wäre klug gewesen.

Schönen Restsonntag noch!
RtotheT

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]