matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelAbstand Punkt-Ebene
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Längen, Abstände, Winkel" - Abstand Punkt-Ebene
Abstand Punkt-Ebene < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Punkt-Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 Mo 15.12.2008
Autor: splin

Aufgabe
Berechnen Sie den minimalen Abstand des Punktes y = (1; 2; 3; 4)> zur Ebene  E: [mm] X=\vektor{1\\ 0\\0\\1} +s\vektor{1\\ 0\\0\\0}+t\vektor{0\\ 0\\-1\\0} [/mm]

Hallo,
normalerweise werde ich HNF von dieser Ebene bilden und dann den Punkt y einsetzen.
Aber ich weiß nicht wie man Kreuzprodukt im [mm] R^4 [/mm] ausrechnet. Gibt es überhaupt ein Normalenvektor für Ebene im [mm] R^4? [/mm]
Bei meinem Einsatz wäre es vielleicht möglich, da viele Komponenten gleich null sind.
Wie gehe ich bei so einer Aufgabe vor?

        
Bezug
Abstand Punkt-Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 Mo 15.12.2008
Autor: reverend


> Berechnen Sie den minimalen Abstand des Punktes y = (1; 2;
> 3; 4)> zur Ebene  E: [mm]X=\vektor{1\\ 0\\0\\1} +s\vektor{1\\ 0\\0\\0}+t\vektor{0\\ 0\\-1\\0}[/mm]

Du könntest auch ohne besondere Kenntnis von Ebenen im [mm] \IR^4 [/mm] zu einer Lösung kommen. Nennen wir die Koordinaten w,x,y,z. Dann besagt Deine Ebenengleichung für jeden beliebigen Punkt der Ebene:
w=1+s
x=0
y=-t
z=1
oder kurz [mm] \vec{x}=\vektor{1+s\\0\\-t\\1} [/mm]
Der Abstand des gegebenen Punktes ist dann
[mm] a=|\vec{a}|=|\vec{x}-\vec{y}=\left|\vektor{1+s\\0\\-t\\1}-\vektor{1\\2\\3\\4}\right|=\left|\vektor{s\\-2\\-t-3\\-3}\right|=\wurzel{s^2+2^2+(t+3)^2+3^2}=\wurzel{s^2+(t+3)^2+13} [/mm]

Für diese Wurzel musst Du nun den kleinstmöglichen Wert finden. Das geht ja glücklicherweise hier ganz einfach...

Bezug
                
Bezug
Abstand Punkt-Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:49 Mo 15.12.2008
Autor: splin

Vielen Dank.
Jetzt verstehe ich das.
Es ist nicht immer sofort ersichtlich wenn man noch wenig damit zutun hatte.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]