matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenAbstand Ebene-Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Abstand Ebene-Ebene
Abstand Ebene-Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Ebene-Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:47 Mo 10.05.2010
Autor: kushkush

Man hat zwei paralelle Ebenen gegebenen, dann kann man den Abstand einfach ablesen?

Alle Webseiten verweisen allerdings auf die Hessische Normalform, die ich allerdings nicht kenne und verstehe. Kann ich den Abstand auch einfach so ablesen ohne es "hessisch" zu normieren? Also quasi an der Differenz der Konstanten?  

$x+y+z-5=0$
$x+y+z-10=0$

Abstand ist 5??


IHDFIKAFG und bin für jede Antwort dankbar!

        
Bezug
Abstand Ebene-Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 02:01 Mo 10.05.2010
Autor: DrNetwork

Und was machst du bei:

2x+5y+15z=10
207x+517.5y+1552.5z=0

Bezug
                
Bezug
Abstand Ebene-Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:06 Mo 10.05.2010
Autor: kushkush

Die obere Gleichung mal $103.5$ rechnen und dann die Differenz der Konstanten nehmen und das ist dann der Abstand???



Bezug
                        
Bezug
Abstand Ebene-Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 02:16 Mo 10.05.2010
Autor: DrNetwork

Also Nein das geht so nicht wenn du z.B.

[mm] E_1: {2x_1+3x_2+4x_3=10} [/mm] mit [mm] {n=\vektor{2 \\ 3 \\ 4}} [/mm]
[mm] G_1: x=\vektor{50\\50\\50}+\lambda \vektor{2 \\ 0 \\ -1} [/mm]

Dann ist der Abstand etwa 81.09

spannst du mit [mm] G_1 [/mm] und einer zweiten parallen Grade eine Ebene auf ändert sich der Abstand nicht. Schau dir mal die hessische Normalform an die ist nicht schwer.

Bezug
                                
Bezug
Abstand Ebene-Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:27 Mo 10.05.2010
Autor: kushkush

Ok dann muss ich wenn ich zwei Ebenen habe einfach durch den Betrag des Normalenvektors der jeweiligen Ebene teilen damit ich dann die Differenz der Konstanten als Abstand nehmen kann???



Danke!!

Bezug
                                        
Bezug
Abstand Ebene-Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 06:55 Mo 10.05.2010
Autor: angela.h.b.

Hallo,

das Kochrezept für Abstände paralleler Ebenen am Beispiel:

gegeben sind zwei parallele Ebenen

x+y+z -5=0
2x+2y+2z - 9 =0.

1. Gleichung durch den Betrag des Normalenvektors dividieren:

[mm] \bruch{1}{\wurzel{3}}(x+y+z [/mm] -5)=0

2. Einen Punkt der zweiten Ebene einsetzen, z.B. (4.5|0|0):

[mm] \bruch{1}{\wurzel{3}}(4.5+0+0 -5)=-\bruch{0.5}{\wurzel{3}}. [/mm]

3. Der Betrag der Zahl, die rauskommt, ist der Abstand d der Ebenen:

[mm] d=\bruch{0.5}{\wurzel{3}}. [/mm]


Ansonsten, wenn Du die HNF nicht kannst oder willst, nimm Dir einen Punkt P von [mm] E_1, [/mm] lege eine Gerade g, die senkrecht zu den beiden Ebenen ist, durch P und bestimme den Schnittpunkt Q mit der zweiten Ebene [mm] E_2. [/mm] Die Länge von [mm] \overrightarrow{PQ} [/mm] ist der gesuchte Abstand.

Gruß v. Angela




Bezug
                                                
Bezug
Abstand Ebene-Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 Mo 10.05.2010
Autor: kushkush

Hallo angela.h.b.,


Dankeschön!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]