Abstände zweier par.Geraden < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Rechenweg:
Aufpunkt einer Gerade nehmen
Daraus Ebene mit Richtungsvektor der anderen Geraden als Normalenvektor
Schnitt Ebene-Gerade
Differenz ausrechnen
Richtig? |
Ich habe zwei nachgewiesenermaßen Parallele Geraden, deren Abstände ich berechnen soll.
Allerdings scheint sich immer irgendwo ein Fehler einzuschleichen, da ich stehts keinen Schnittpunkt erhalte. Im folgenden mein Weg.
[mm] g:\vec{x}=\vektor{2 \\1 \\2 } [/mm] + t * [mm] \vektor{1 \\0 \\1 } [/mm]
[mm] h:\vec{x}=\vektor{2 \\3 \\4 }+s*\vektor{3 \\0 \\3 }
[/mm]
Nun nehme ich den Aufpunkt von h
[mm] P_{h}=\vektor{2 \\3 \\4 }
[/mm]
und als Normalenvektor der Ebene den Richtungsvektor von g und erhalte:
[mm] E_{h}=\vektor{1 \\0 \\1 } (\vec{x}-\vektor{2 \\3 \\4 })
[/mm]
und setze jetzt für [mm] \vec{x} [/mm] die Gerade g ein, um den Schnittpunkt zu erhalten:
[mm] E_{h}=\vektor{1 \\0 \\1 } (\vektor{2 \\1 \\2 }+t*\vektor{1 \\0 \\1 }-\vektor{2 \\3 \\4 })
[/mm]
[mm] \vec{0}=\vektor{1 \\0 \\1 } (\vektor{2 \\1 \\2 }+t*\vektor{1 \\0 \\1 }-\vektor{2 \\3 \\4 })
[/mm]
Löse ich hier weiter auf komme ich schließlich auf drei Gleichungssysteme und erhalte für t keine Lösung.
Könnt ihr mir sagen, wo der Fehler liegt?
MfG
Don Psycho
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:21 Do 16.11.2006 | Autor: | galileo |
Hallo donpsycho
> Rechenweg:
> Aufpunkt einer Gerade nehmen
> Daraus Ebene mit Richtungsvektor der anderen Geraden als
> Normalenvektor
> Schnitt Ebene-Gerade
> Differenz ausrechnen
> Richtig?
Man kann es auch so machen, ja.
> Ich habe zwei nachgewiesenermaßen Parallele Geraden, deren
> Abstände ich berechnen soll.
> Allerdings scheint sich immer irgendwo ein Fehler
> einzuschleichen, da ich stehts keinen Schnittpunkt erhalte.
> Im folgenden mein Weg.
> [mm]g:\vec{x}=\vektor{2 \\1 \\2 }[/mm] + t * [mm]\vektor{1 \\0 \\1 }[/mm]
> [mm]h:\vec{x}=\vektor{2 \\3 \\4 }+s*\vektor{3 \\0 \\3 }[/mm]
> Nun
> nehme ich den Aufpunkt von h
> [mm]P_{h}=\vektor{2 \\3 \\4 }[/mm]
> und als Normalenvektor der
> Ebene den Richtungsvektor von g und erhalte:
> [mm]E_{h}=\vektor{1 \\0 \\1 } (\vec{x}-\vektor{2 \\3 \\4 })[/mm]
>
> und setze jetzt für [mm]\vec{x}[/mm] die Gerade g ein, um den
> Schnittpunkt zu erhalten:
> [mm]E_{h}=\vektor{1 \\0 \\1 } (\vektor{2 \\1 \\2 }+t*\vektor{1 \\0 \\1 }-\vektor{2 \\3 \\4 })[/mm]
>
> [mm]\vec{0}=\vektor{1 \\0 \\1 } (\vektor{2 \\1 \\2 }+t*\vektor{1 \\0 \\1 }-\vektor{2 \\3 \\4 })[/mm]
>
> Löse ich hier weiter auf komme ich schließlich auf drei
> Gleichungssysteme und erhalte für t keine Lösung.
> Könnt ihr mir sagen, wo der Fehler liegt?
Ja, du erhältst kein Gleichungssystem, sondern eine einzige Gleichung in t.
Die Lösung ist t=1. Vergesse nicht, dass du ein Skalarprodukt hast.
Alles klar?
Schöne Grüße, galileo
|
|
|
|