matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenAbstände von Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Geraden und Ebenen" - Abstände von Vektoren
Abstände von Vektoren < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstände von Vektoren: Allgemein zu Vektoren
Status: (Frage) beantwortet Status 
Datum: 14:55 Di 26.06.2007
Autor: headbanger

Aufgabe
allgemeine fragen

hi Leute,

ich lerne gerade n bischen Mathe und ich kapiere nicht, wie man den Abstand von 2 Punkten auf einem Vektor ausrechnet.

Und, noch eine Frage zur Winkelberechnung:

es heißt ja: [mm] \overrightarrow{AB}=I\overrightarrow{A}I [/mm] x [mm] I\overrightarrow [/mm] {B} x cos [mm] \alpha [/mm]

das wird dann umgewandelt

[mm] a_{1*}b_{1}+a_{2}*b_{2}+a_{3}*b_{3} [/mm]  geteilt durch (Bruch) [mm] \wurzel{I\vec{a}I + I\vec{b}I} [/mm]

wieso wird das Skalarprodukt hier durch die Vektorenlängen geteilt?

was sagt das skalarprodukt aus?

entschuldigung, wenn ich die frage etwas unübersichtlich gestellt habe, aber ich habe noch etwas schwierigkeiten mit der tech-schreibweise.

mfg

tobi

        
Bezug
Abstände von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Di 26.06.2007
Autor: leduart

Hallo
1. Der Abstand bestimmt sich einfach aus dem Pythagoras, zeichne erst mal 2 Punkte in der Ebene, dann zeichne die Differenz ihrer x- und y- Komponenten ein, du hast ein rechtwinkliges Dreieck.
im Raum ist das entsprechend die "Diagonale" im Quader aus den entsprechenden Komponenten.
zu 2.
wenn du einen Vektor erst mal skalar mit dem Einheitsvektor in x- Richtung multiplizierst, kannst du, wenn du den Vektor (a1,a2) einzeichnest sehen, das [mm] cos\alpha [/mm] zur x- Achse =a1/(Länge des Vektors) ist. also hier [mm] cos\alpha=(1,0)*(a1,a2)/\wurzel{a1^2+a2^2} [/mm]
wenn der Vektor länger wird, aber seine Richtung dieselbe ist natürlich auch der cos derselbe, deshalb, wenn du immer noch jetzt (7,0)*(a1,a2) nimmst musst du auch noch durch den betrag des ersten vektors teilen.
das jetzt auf allgemeine Vektoren anzuwenden geht mir hier zu lang, das stht irgendwo in deinem mathebuch mit ner schönen Zeichnung.
dass der Winkel zwischen 2 Vektoren gleich bleibt, wenn man sie beide irgendwie vergrößert ist aber direkt anschaulich klar. also klar, dass man durch ihre Länge teilen muss.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]