matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelAbstände
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Längen, Abstände, Winkel" - Abstände
Abstände < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstände: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:57 Sa 17.04.2010
Autor: bjoern777

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Gegeben sind die Ebene IE: \vektor{1\\-2\\2} x(vektor)=3 UND DIE GERADE g:x(vektor)= \vektor{11\\-15\\8} + \lambda \vektor[4\\-5\\2}

a) Bestimme alle Punkte p, die auf g liegen und von IE den Abstand 6 haben.
b) Bestimme denjenigen Punkt Q aus IE, der vom Koordinatenursprung minimalen Abstand hat.
c) Bestimme denjenigen Punkt R von g, der vom Koordinatenursprung minimalen Abstand hat.  

Es wäre ganz toll, wenn mir das jemand, an diesem Bsp. erklären könnte, da ich in 3 Wochen Mathe schreibe und immoment wirklich noch nicht sehr viel verstehe von dieser ganzen Materie!

# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abstände: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Sa 17.04.2010
Autor: bjoern777

Aufgabe
Gegeben sind die Ebene IE: [mm] \vektor{1\\-2\\2} [/mm] x(vektor)=3 UND DIE GERADE g:x(vektor)= [mm] \vektor{11\\-15\\8} [/mm] + [mm] \lambda \vektor{4\\-5\\2} [/mm]

a) Bestimme alle Punkte p, die auf g liegen und von IE den Abstand 6 haben.
b) Bestimme denjenigen Punkt Q aus IE, der vom Koordinatenursprung minimalen Abstand hat.
c) Bestimme denjenigen Punkt R von g, der vom Koordinatenursprung minimalen Abstand hat.  

Es wäre ganz toll, wenn mir das jemand, an diesem Bsp. erklären könnte, da ich in 3 Wochen Mathe schreibe und immoment wirklich noch nicht sehr viel verstehe von dieser ganzen Materie!

# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                
Bezug
Abstände: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Sa 17.04.2010
Autor: steppenhahn

Hallo!

> Gegeben sind die Ebene IE: [mm]\vektor{1\\-2\\2}[/mm] x(vektor)=3
> UND DIE GERADE g:x(vektor)= [mm]\vektor{11\\-15\\8}[/mm] + [mm]\lambda \vektor{4\\-5\\2}[/mm]
>  
> a) Bestimme alle Punkte p, die auf g liegen und von IE den
> Abstand 6 haben.
>  b) Bestimme denjenigen Punkt Q aus IE, der vom
> Koordinatenursprung minimalen Abstand hat.
>  c) Bestimme denjenigen Punkt R von g, der vom
> Koordinatenursprung minimalen Abstand hat.
> Es wäre ganz toll, wenn mir das jemand, an diesem Bsp.
> erklären könnte, da ich in 3 Wochen Mathe schreibe und
> immoment wirklich noch nicht sehr viel verstehe von dieser
> ganzen Materie!

Mal ganz ehrlich: Würdest du dich für jemand anderes hinsetzen, alles vorrechnen und dabei auch noch Spaß haben? :-)
Deswegen machen wir das hier so: Wir geben dir Tipps, und erarbeiten zusammen mit dir die Lösung. Immer wenn dir etwas unklar ist, kannst du nachfragen.

Zu a):

Wenn ich dir einen Punkt gebe, zum Beispiel [mm] $\vec{x} [/mm] = [mm] \vektor{2\\2\\2}$, [/mm] kannst du dann den Abstand dieses Punktes zur Ebene berechnen?
Schreibe dir genau auf, wie du das tun würdest.

Eine Gerade ist nichts anderes als eine ganze Menge von Punkten. Du kannst, um dir das deutlich zu machen, die Gerade so umschreiben:

[mm] $g:\vec{x} [/mm] = [mm] \vektor{11\\-15\\8}+\lambda \vektor{4\\-5\\2} [/mm] = [mm] \vektor{11+4*\lambda\\-15 - 5*\lambda\\ 8 + 2*\lambda}$. [/mm]

Setze nun anstelle des Punktes [mm] \vektor{2\\2\\2}, [/mm] mit dem du vorhin den Abstand zur Ebene E ausgerechnet hast, diesen "Punkt" in deine Rechnungen ein.
Am Ende kommst du auf eine Gleichung der Form 6 = Abstand = ... irgendwas mit [mm] \lambda [/mm] ..., was du nach [mm] \lambda [/mm] umstellen musst.


Zu b):
Die Aufgabe könnte auch mit einem beliebigen Punkt P gestellt sein anstatt des Koordinatenursprungs. Du musst nur wissen: Es hat immer der Punkt P' der Ebene den kleinsten Abstand zu P, der das Lot von P auf die Ebene ist.

Um das Lot eines Punktes P auf eine Ebene E zu bestimmen, gehst du folgendermaßen vor:

- Berechne den Normalenvektor der Ebene E.
- Bilde die "Lotgerade" P + [mm] \lambda*Normalenvektor. [/mm]
- Untersuche die Schnittpunkte der Lotgeraden mit der Ebene E
- Der Schnittpunkt ist das Lot von P auf die Ebene E.


Zu c):
Das machen wir, wenn a) und b) geschafft sind :-)

Grüße,
Stefan


Bezug
        
Bezug
Abstände: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:31 Sa 17.04.2010
Autor: M.Rex

Hallo und [willkommenmr]

Ich habe deine beiden identischen Fragen mal zusammengefasst.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]