matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelAbstände
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Längen, Abstände, Winkel" - Abstände
Abstände < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstände: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Sa 12.01.2008
Autor: i.da

Aufgabe
Wie berechnet man den Abstand von:

Gerade u. Punkt
Ebene 1 u. Ebene 2
Gerade 1 u. Gerade 2 (parallel)
Gerade 1 u. Gerade 2 (windschief)
Punkt 1 u. Punkt 2
Gerade u. Ebene                                        ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Kann mir jemand helfen?

        
Bezug
Abstände: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Sa 12.01.2008
Autor: Zwerglein

Hi, Ida,

natürlich gibt es für alle diese Probleme verschiedene Lösungen!
Ich geb' Dir daher nur VORSCHLÄGE, wie Du's machen könntest.
Du solltest in jedem Fall nachschauen (Skript, Lehrbuch, etc.), wie's bei Euch in der Schule gemacht wird!

> Wie berechnet man den Abstand von:
>  
> (1) Gerade u. Punkt

Lege eine Ebene durch den Punkt (P), die senkrecht auf der Geraden steht.
Schneide diese Ebene mit der Geraden: Schnittpunkt L.
Der gesuchte Abstand ist dann [mm] \overline{PL} [/mm]

>  (2) Ebene 1 u. Ebene 2

Natürlich sind die Ebenen parallel; sonst ist die Aufgabe nicht sinnvoll!
Nimm' den Aufpunkt der einen Ebene und setze ihn in die HNF der anderen Ebene ein.
Wenn Du die HNF nicht kennen solltest, sag' bitte Bescheid - dann geb' ich Dir eine Alternativmethode!

>  (3) Gerade 1 u. Gerade 2 (parallel)

Analog zu Problem (1) - Du nimmst als Punkt P den Aufpunkt der einen Geraden und berechnest dessen Abstand zur zweiten Geraden.

>  (4) Gerade 1 u. Gerade 2 (windschief)

Bilde eine Ebene E, die die eine Gerade enthält und parallel zur zweiten Geraden liegt.
Dann bestimme (wie in (2)!) den Abstand des Aufpunktes der zweiten Geraden zu dieser Ebene: Dieser Abstand ist genauso groß wie der gesuchte!

>  (5) Punkt 1 u. Punkt 2

Na, hör mal! Du wirst doch wohl wissen, wie man den Abstand zweier Punkte berechnet! ("räumlicher Pythagoras" - schau mal in Deiner Formelsammlung nach!)

> (6) Gerade u. Ebene    ?

Gerade und Ebene müssen parallel sein - sonst nicht sinnvoll!
Nimm' den Aufpunkt der Geraden und berechne wie in (2) den Abstand dieses Punktes zur gegebenen Ebene!
  
mfG!
Zwerglein

Bezug
                
Bezug
Abstände: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:24 So 13.01.2008
Autor: i.da

was HNF ist weiß ich nicht.. oder ich kenn die abkürzung nicht.

Bezug
                        
Bezug
Abstände: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:33 So 13.01.2008
Autor: Zwerglein

Hi, Ida,

HNF heißt "Hessesche Normalenform".

Wenn Du die nicht kennst (Es gibt Schulen bzw. Schularten, bei denen darauf verzichtet wird), dann musst Du das Problem (2) (Abstand 2er paralleler Ebenen bzw. - was aufs selbe rauskommt: Abstand eines Punktes P zu einer Ebene E) so lösen:
Du stellst eine Gleichung der Geraden auf, die durch den Punkt P geht und auf der Ebene E senkrecht steht (Lotgerade!). Dann schneidest Du diese Lotgerade mit der Ebene; Du erhältst den Lotfußpunkt L.
Der gesuchte Abstand ist dann [mm] \overline{PL}. [/mm]

Noch Fragen?

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]