matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieAbschnittstopologie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - Abschnittstopologie
Abschnittstopologie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschnittstopologie: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:01 Mo 19.12.2011
Autor: hannahmaontana

Aufgabe
Für jede Ordnung R auf der Menge X ist [mm] a(X,R)=\{ AR:A\subseteq X\} [/mm] mit [mm] AR=\{ y\in X: \exists x\in A mit xRy\} [/mm] die Abschnittstopologie.

1. Ist A(X,R)=(X,a(X,R)) immer ein A-Raum?

2. Ist es Frechet-Raum?

3. Ist es [mm] A_2 [/mm] Raum?

Ich weiß, dass A(X,R) immer ein A-Raum und immer Frechet Raum ist, aber nur manchmal ein [mm] A_2 [/mm] Raum.

1.Also erstmal stelle ich mir A(X,R) so vor, dass das genau die Teilmengen aus X sind, welche bzgl. R ein größeres (oder kleineres) Element haben.
Wie kann ich denn zeigen, dass überabzaählbare Vereinigungen von a(X,R) wieder drin sind? Dass abzählbare drin sind ist ja klar.

3. Ich vermute, es ist ein [mm] A_2 [/mm] Raum, wenn die Ordnung total ist, also alle Elemente vergleichbar sind. Weil dann kann man die Elemente nacheinander aufreihen und zählen. Aber eigentlich kann das gar nicht sein weil das gleiche Argument dann auch bei den reellen Zahlen ziehen würde...?!

Danke für Eure Hilfe.

        
Bezug
Abschnittstopologie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:11 Do 22.12.2011
Autor: hippias


> Für jede Ordnung R auf der Menge X ist [mm]a(X,R)=\{ AR:A\subseteq X\}[/mm]
> mit [mm]AR=\{ y\in X: \exists x\in A mit xRy\}[/mm] die
> Abschnittstopologie.
>  
> 1. Ist A(X,R)=(X,a(X,R)) immer ein A-Raum?
>  
> 2. Ist es Frechet-Raum?
>  
> 3. Ist es [mm]A_2[/mm] Raum?
>  Ich weiß, dass A(X,R) immer ein A-Raum und immer Frechet
> Raum ist, aber nur manchmal ein [mm]A_2[/mm] Raum.
>  
> 1.Also erstmal stelle ich mir A(X,R) so vor, dass das genau
> die Teilmengen aus X sind, welche bzgl. R ein größeres
> (oder kleineres) Element haben.
>  Wie kann ich denn zeigen, dass überabzaählbare
> Vereinigungen von a(X,R) wieder drin sind? Dass abzählbare
> drin sind ist ja klar.

Wenn ich Deine Frage richtig verstehe, dann moechtest Du zeigen, dass beliebige Vereinigung von offenen Menge offen ist? Es gilt [mm] $\cup_{i\in I} A_{i}R= (\cup_{i\in I} A_{i})R$. [/mm]

>  
> 3. Ich vermute, es ist ein [mm]A_2[/mm] Raum, wenn die Ordnung total
> ist, also alle Elemente vergleichbar sind. Weil dann kann
> man die Elemente nacheinander aufreihen und zählen. Aber
> eigentlich kann das gar nicht sein weil das gleiche
> Argument dann auch bei den reellen Zahlen ziehen
> würde...?!

Leider weiss ich nicht, was ein [mm] $A_{2}$- [/mm] Raum ist. Wenn Du mir die Definition mitteilst, koennte ich versuchen Dir zu helfen.

>  
> Danke für Eure Hilfe.


Bezug
        
Bezug
Abschnittstopologie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Do 22.12.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]