matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKapitel 1: Elementare GruppentheorieAbschnitt 5.1, Zusatzaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Kapitel 1: Elementare Gruppentheorie" - Abschnitt 5.1, Zusatzaufgabe
Abschnitt 5.1, Zusatzaufgabe < Kap 1: El. Gruppenth < Algebra-Kurs 2006 < Universität < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kapitel 1: Elementare Gruppentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschnitt 5.1, Zusatzaufgabe: Aufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 11:59 Fr 22.09.2006
Autor: felixf

Aufgabe

Sei $G$ eine Gruppe mit $|G| = [mm] p^n$, [/mm] wobei $p$ eine Primzahl sei und $n [mm] \in \IN$. [/mm] Zeige, dass das Zentrum $Z$ von $G$ mindestens $p$ Elemente umfasst.

Hinweis: Klassengleichung.


        
Bezug
Abschnitt 5.1, Zusatzaufgabe: (Entwurf)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:16 So 24.09.2006
Autor: Riley

ord(G) = ord(Z) + [mm] \summe_{i=1}^{n}(G:Z_{x_i}) [/mm] (S:242 Klassengleichung)

Zentralisator: [mm] Z_s [/mm] = [mm] \{x \in G: xs=sx \mbox{ für alle}s \in S\} [/mm]

Zentrum von G: Z = [mm] Z_G=\{x \inG: xs=sx \mbox{ für alle} s \in G\}[/mm]

Bezug
        
Bezug
Abschnitt 5.1, Zusatzaufgabe: kleine frage
Status: (Frage) beantwortet Status 
Datum: 10:17 So 24.09.2006
Autor: Riley

bedeutet [mm] |G|=p^n [/mm] , dass die Ordnung von G ord(G) = [mm] p^n [/mm] ist?

viele grüße
riley

Bezug
                
Bezug
Abschnitt 5.1, Zusatzaufgabe: kleine Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 So 24.09.2006
Autor: statler

Hi!

> bedeutet [mm]|G|=p^n[/mm] , dass die Ordnung von G ord(G) = [mm]p^n[/mm]
> ist?

Ich merke gerade, daß wir da geschlampt haben, Bosch benutzt |G| nicht, sondern nur ord(G). Aber dein Verdacht stimmt natürlich.

(Es gibt auch noch die Schreibweise #G, mein Prof. hat das fis-G ausgesprochen.)

Grüße zurück
Dieter


Bezug
                        
Bezug
Abschnitt 5.1, Zusatzaufgabe: kleine mitteilung =)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:31 So 24.09.2006
Autor: Riley

Hi Dieter!
okay, danke. ist auch mal gut verschiedene bezeichnungen kennenzulernen!

viele grüße
yela =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kapitel 1: Elementare Gruppentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]