matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisAbschlüsse und offene Kerne
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Abschlüsse und offene Kerne
Abschlüsse und offene Kerne < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschlüsse und offene Kerne: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 01:25 So 30.05.2010
Autor: mohn

Aufgabe
Es seien [mm](X,d)[/mm] ein metrischer Raum und [mm]A \subset X[/mm] eine Teilmenge.
a) Zeigen Sie, dass [mm]\overline{A}[/mm] die kleinste abgeschlossene Teilmenge von [mm]X[/mm] ist, die [mm]A[/mm] enthält, d.h., dass für jede abgeschlossene Teilmenge [mm]B[/mm] von [mm]X[/mm]
[mm] A\subset [/mm] B [mm] \Rightarrow \overline{A}\subset [/mm] B

gilt.
Beweisen Sie auch
[mm] \overline{A}=\bigcap_{B\subset X} [/mm] B (B abgeschlossen und [mm] A\subset [/mm] B)


b) Schließen Sie, dass [mm]A'[/mm] die größte offene Teilmenge von [mm]X[/mm] ist, die in [mm]A[/mm] enthalten ist,
d.h. dass für jede offene Teilmenge [mm]B[/mm] von [mm]X[/mm]
[mm] B\subset A \Rightarrow B\subset A' [/mm]

gilt.
Zeigen Sie auch
[mm] A'=\bigcup_{B\subset X} B [/mm] (B offen und [mm] B\subset [/mm] A)

Leider fehlt mir hier schon komplett der Ansatz!
Wäre sehr dankbar für jeden Tipp!

lg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Abschlüsse und offene Kerne: Antwort
Status: (Antwort) fertig Status 
Datum: 07:40 Di 01.06.2010
Autor: fred97


> Es seien [mm](X,d)[/mm] ein metrischer Raum und [mm]A \subset X[/mm] eine
> Teilmenge.
>  a) Zeigen Sie, dass [mm]\overline{A}[/mm] die kleinste
> abgeschlossene Teilmenge von [mm]X[/mm] ist, die [mm]A[/mm] enthält, d.h.,
> dass für jede abgeschlossene Teilmenge [mm]B[/mm] von [mm]X[/mm]
>    [mm]A\subset[/mm] B [mm]\Rightarrow \overline{A}\subset[/mm] B
> gilt.
> Beweisen Sie auch
>   [mm]\overline{A}=\bigcap_{B\subset X}[/mm] B (B abgeschlossen und
> [mm]A\subset[/mm] B)
>  
> b) Schließen Sie, dass [mm]A'[/mm] die größte offene Teilmenge
> von [mm]X[/mm] ist, die in [mm]A[/mm] enthalten ist,
>  d.h. dass für jede offene Teilmenge [mm]B[/mm] von [mm]X[/mm]
>   [mm]B\subset A \Rightarrow B\subset A'[/mm]
> gilt.
>  Zeigen Sie auch
>   [mm]A'=\bigcup_{B\subset X} B[/mm] (B offen und [mm]B\subset[/mm] A)
> Leider fehlt mir hier schon komplett der Ansatz!

Bald kann ich so etwas nicht mehr hören (lesen) !  Mathematik hat auch viel mit Probieren und Ausdauer zu tun. Wenn man sich eine Aufgabe durchliest und nach 2 Sekunden den Stift in die Ecke wirft, weil man nicht weiß was man tun soll, wird man in der Mathematik nie Erfolg haben !

Zu a)

1. Schreib Dir die Def. von $ [mm] \overline{A} [/mm] $ hin.

2. Mach Dir klar, was Du zeigen sollst

3. Leg los mit Probieren: nimm eine abgeschlossene Teilmenge $ B $ von  X  mit $ A [mm] \subset [/mm] B $ und versuche zu zeigen: $ [mm] \overline{A}\subset [/mm]  B$

FRED






>  Wäre sehr dankbar für jeden Tipp!
>  
> lg
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]