matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisAbschätzung mit Chauchy-Ungl.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Abschätzung mit Chauchy-Ungl.
Abschätzung mit Chauchy-Ungl. < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung mit Chauchy-Ungl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Mo 08.12.2008
Autor: Kathy2006

Aufgabe
Sei f eine ganze Funktion und es gebe [mm] c_{j}, [/mm] j = 0,1,...,m und ein R>0, so dass für alle z [mm] \in \IC [/mm] mit |z| [mm] \ge [/mm] R gilt:

|f(z)| [mm] \le \summe_{j=0}^{m}c_{j}|z|^{j} [/mm]

Zeigen Sie, dass f ein Polynom vom Grade [mm] \le [/mm] m ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also meine Idee ist, die Cauchyschen Ungleichungen zu verwenden und damit zu zeigen, dass [mm] f^{n}(0) [/mm] = 0 ist für alle n > m.

Es gilt ja, dass für alle z [mm] \in \IC [/mm] mit [mm] |z-z_{0}| \le \bruch{r}{2} [/mm]

[mm] |f^{n}(z)| \le C_{n}\bruch{n!}{r^{n}}\max_{|\varphi-z_{0}|=r}|f(\varphi)| [/mm]

wobei [mm] C_{n} [/mm] eine von f unabhängige Konstante ist, [mm] z_{0} [/mm] der Mittelpunkt und r der Radius, so dass f auf [mm] \overline{D}(z_{0},r) [/mm] holomorph ist, was in unserem Fall ja eigentlich frei wählbar ist, da f ja ganz ist, oder?

Ich habe dann versucht das ganze abzuschätzen, bin da aber auf nichts Vernünftiges gekommen.


Würde mich sehr über ein paar Tipps freuen!

        
Bezug
Abschätzung mit Chauchy-Ungl.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:58 Mo 08.12.2008
Autor: rainerS

Hallo!

> Sei f eine ganze Funktion und es gebe [mm]c_{j},[/mm] j = 0,1,...,m
> und ein R>0, so dass für alle z [mm]\in \IC[/mm] mit |z| [mm]\ge[/mm] R gilt:
>
> |f(z)| [mm]\le \summe_{j=0}^{m}c_{j}|z|^{j}[/mm]
>  
> Zeigen Sie, dass f ein Polynom vom Grade [mm]\le[/mm] m ist.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Also meine Idee ist, die Cauchyschen Ungleichungen zu
> verwenden und damit zu zeigen, dass [mm]f^{n}(0)[/mm] = 0 ist für
> alle n > m.
>
> Es gilt ja, dass für alle z [mm]\in \IC[/mm] mit [mm]|z-z_{0}| \le \bruch{r}{2}[/mm]
>
> [mm]|f^{n}(z)| \le C_{n}\bruch{n!}{r^{n}}\max_{|\varphi-z_{0}|=r}|f(\varphi)|[/mm]
>
> wobei [mm]C_{n}[/mm] eine von f unabhängige Konstante ist, [mm]z_{0}[/mm] der
> Mittelpunkt und r der Radius, so dass f auf
> [mm]\overline{D}(z_{0},r)[/mm] holomorph ist, was in unserem Fall ja
> eigentlich frei wählbar ist, da f ja ganz ist, oder?
>  
> Ich habe dann versucht das ganze abzuschätzen, bin da aber
> auf nichts Vernünftiges gekommen.

Was hast du denn bisher abgeschätzt?

Für den Fall [mm] $z_0=0$ [/mm] lautet deine Ungleichung doch

[mm]|f^{n}(z)| \le C_{n}\bruch{n!}{r^{n}}\max_{|\varphi|=r}|f(\varphi)|[/mm] für alle [mm] z \in \IC[/mm] mit [mm] $|z|\le \bruch{r}{2}$. [/mm]

Nach Voraussetzung ist

[mm] \max_{|\varphi|=r}|f(\varphi)| \le \max_{|\varphi|=r} \summe_{j=0}^{m}c_{j}|z|^{j} = \summe_{j=0}^{m}c_{j}r^j [/mm] für alle [mm] $r\ge [/mm] R$.

Was passiert, wenn du r immer größer werden lässt?

Viele Grüße
   Rainer



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]