matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe ZahlenAbschätzung einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "komplexe Zahlen" - Abschätzung einer Funktion
Abschätzung einer Funktion < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:21 Mo 11.05.2009
Autor: pinclady

Aufgabe
Es sei t,x [mm] \in \IR [/mm]

h(t,x) = [mm] e^{itx}-1-\bruch{itx}{1+x^2} [/mm]
zZ: für jedes feste t [mm] \in \IR [/mm] exist. positive Konstanten C1, C2, s.d. für alle x  [mm] \in \IR: [/mm] |h(t,x)| [mm] \le C1\* x^2\* 1_{\{|x|\le1\}} (x)+C2\* 1_{\{|x|>1\} }(x) [/mm]

Hallo  zusammen,

die Fkt., mit der ich abschätze, ist in [-1,1] eine Parabel mit c1 als "Breite"
und  sonst eine Konstante c2.

Ich habe versucht mit der Dreiecksungl.  |h(t,x)| abzuschätzen, bekomme dann :  |e^(itx)| =1  [mm] |\bruch{itx}{1+x^2}|=|\bruch{tx}{1+x^2}| [/mm]
|h(t,x)| [mm] \le -|\bruch{tx}{1+x^2}| [/mm] ?? negativ:(  
Habe ich da was falsch gemacht?

Sonst habe ich noch versucht exp-Fkt durch ihre Reihedarst. zu ersetzen. Komm da auch nicht weiter.

Vll. hat jemand von euch eine Idee.
Danke im Voraus
LG

        
Bezug
Abschätzung einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:56 Mo 11.05.2009
Autor: leduart

Hallo
Wie wendest du denn die Dreiecksungl an?
[mm] |a+b+c|\le [/mm] |a|+|b|+|c|
du laesst z. Bsp die 1 ganz weg? und bei dem letzten das - ist auch falsch.
Hast du dir mal das Aussehen der fkt fuer festes t angesehen?
Gruss leduart

Bezug
                
Bezug
Abschätzung einer Funktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:46 Mo 11.05.2009
Autor: pinclady

OOO wie peinlich.... :O
War wohl etwas zu schnell, also es wäre dann:
Dreicksungl. habe ich auf h(t,x) angewendet:
|h(t,x)| [mm] \le |e^{itx}-1-\bruch{itx}{1+x^2}| \le |e^{itx}|+|-1|+|-\bruch{itx}{1+x^2}| [/mm]
Damit ist wegen |e^(itx)|= [mm] e^0=1 [/mm]
|h(t,x)| [mm] \le 2+|\bruch{tx}{1+x^2}| [/mm]

Wie komme ich denn zu der Darstellung mit Indikatorfkt.??

LG

Bezug
                        
Bezug
Abschätzung einer Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 13.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]