matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisAbschätzung einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Abschätzung einer Funktion
Abschätzung einer Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Mi 26.09.2018
Autor: Maxi1995

Hallo,
ih beziehe mich []auf Seite 60 unten - Funktionentheorie   auf die Abschätzung zur Lipschitz-Eigenschaft.
Kann mir jemand erklären, warum für eine holomorphe Funktion f auf einem Gebiet D auf einem Rechteck [mm] $R=\lbrace (z,w):|z-z_0|
[mm] $|f(z,w_1)-f(z-w_2)| \leq sup_{(z,w) \in R}|f_w(z,w)||w_1-w_2|$ [/mm]

hierbei ist [mm] $f_w$ [/mm] die partielle Ableitung von f in Richtung w mit komplexem w.

        
Bezug
Abschätzung einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:05 Do 27.09.2018
Autor: fred97


> Hallo,
>  ih beziehe mich
> []auf Seite 60 unten - Funktionentheorie
> auf die Abschätzung zur Lipschitz-Eigenschaft.
>  Kann mir jemand erklären, warum für eine holomorphe
> Funktion f auf einem Gebiet D auf einem Rechteck [mm]R=\lbrace (z,w):|z-z_0|
> nach der Standardabschätzung für Integrale gilt, dass
>  
> [mm]|f(z,w_1)-f(z-w_2)| \leq sup_{(z,w) \in R}|f_w(z,w)||w_1-w_2|[/mm]
>
> hierbei ist [mm]f_w[/mm] die partielle Ableitung von f in Richtung w
> mit komplexem w.


Ich übernehme die Bezeichnungen aus Satz 13.3 und setze $L:= [mm] \sup \{|f_w(z,w)|:(z,w) \in R\}$. [/mm] Nun sei $z$ mit [mm] $|z-z_0|
Sind nun [mm] w_1 [/mm] und [mm] w_2 [/mm] so, dass [mm] (z,w_1),(z,w_2) \in [/mm] R, so def. den Weg c:[0,1] [mm] \to \IC [/mm] durch

[mm] c(t)=w_1+t(w_2-w_1). [/mm]

Damit ist

[mm] $f(z,w_2)-f(z,w_1)=g(w_2)-g(w_1)=g(c(1))-g(c(0))= \int_c [/mm] g'(u) du.$

Also

(*) $ [mm] |f(z,w_2)-f(z,w_1)|=|\int_c [/mm] g'(u) du|.$

Auf  dem Weg c ist $ |g'(u)| [mm] \le [/mm] L$ und die Länge des Weges c ist [mm] =|w_2-w_1| [/mm]

Die Standardabschätzung für Wegintegrale liefert dann

[mm] $|\int_c [/mm] g'(u) du| [mm] \le L|w_2-w_1|.$ [/mm]

Aus (*) folgt dann das Gewünschte.



Bezug
                
Bezug
Abschätzung einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:30 Fr 28.09.2018
Autor: Maxi1995

Vielen Dank, das ist mir jetzt klar geworden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]