matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikAbschätzung bei Jacobi Verfahr
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Numerik" - Abschätzung bei Jacobi Verfahr
Abschätzung bei Jacobi Verfahr < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung bei Jacobi Verfahr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 So 16.11.2008
Autor: Wimme

Aufgabe
A= [mm] \pmat{ 3 & -2 & 1 \\ -1 & 9 & 2 \\ 1 & 0 & 6 } [/mm]
b= [mm] \pmat{ 7 \\ 0 \\ 8} [/mm]
[mm] x^0 [/mm] von vorheriger Teilaufgabe falls nötig: [mm] x^0= \pmat{ 1 \\ 2 \\ 0} [/mm]

Zeigen Sie, dass die Iterierte [mm] x^{(m)} [/mm] des JacobiVerfahrens (Gesamtschrittverfahren) für die angegebene Matrix A die Abschätzung:

[mm] ||A^{-1}b-x^{(m)}||_1 \leq (\frac{2}{3})^m ||A^{-1}b-x^{(0)}||_1 [/mm]

erfüllt.

Hi!

Ich hoffe ihr könnt mir bei der Aufgabe helfen.
Also ich habe mir gedacht, dass ich mal mit der linken Seite anfange und schreibe, was das überhaupt ist:

[mm] ||A^{-1}b-x^{(m)}||_1 [/mm] = [mm] ||A^{-1}b-(x^{(m-1)}+D^{-1}(b-Ax^{(m-1)}))||_1 [/mm]

Das könnte ich natürlich fortführen, bis ich irgendwann bei [mm] x^{(0)} [/mm] angekommen bin. Aber ich erkenne kein rechtes Prinzip, ich weiß nicht, wie ich an [mm] \frac{2}{3} [/mm] kommen soll.

Ist das überhaupt so der richtige Weg?

Ich danke für Tipps!

        
Bezug
Abschätzung bei Jacobi Verfahr: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 So 16.11.2008
Autor: blascowitz

Hallo also dein Weg ist der Richtige. Nun musst du dir mal die Fehlerfortpflanzungsmatrix(was das ist kommt gleich) angucken.
Also

$ [mm] ||A^{-1}b-x^{(m)}||_1 [/mm] $ = $ [mm] ||A^{-1}b-(x^{(m-1)}+D^{-1}(b-Ax^{(m-1)}))||_1$ [/mm] =$ [mm] ||x-(x^{(m-1)}+D^{-1}(b-Ax^{(m-1)}))||_1$, [/mm] weil ja [mm] A^{-1}b=x [/mm] ist, wobei x die exakte Lösung von Ax=b ist. So das kann man jetzt auch schreiben als  
[mm] $||x-(x^{(m-1)}+D^{-1}(b-Ax^{(m-1)}))||_1= ||(I-D^{-1}A)(x-x^{(m-1)})||_{1}$. [/mm] Jetzt nutzt du die Supmultiplikativität der 1-Norm:
[mm] $||(I-D^{-1}A)(x-x^{(m-1)})||_{1}\leq ||I-D^{-1}A||_{1}||x-x^{(m-1)}||_{1}$ [/mm]
Die Fehlerfortpflanzungsmatrix ist dann [mm] $I-D^{-1}A$. [/mm] Die musst du jetzt ausrechnen und von der Berechneten Matrix die Spaltensummennorm bestimmen. So solltest du auf [mm] \bruch{2}{3} [/mm] kommen. Da du dass jetzt ja nochmal machen kannst folgt daraus dann die zu beweisende Aussage

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]