matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenAbschätzung Exponentialreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Abschätzung Exponentialreihe
Abschätzung Exponentialreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung Exponentialreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 Di 07.04.2015
Autor: UniversellesObjekt

Eine Aufgabe in Amann/Escher lautet: Für $n>0$ zeige man [mm] $0
Als Hinweis ist gegeben, man solle [mm] $y_m=\sum_{k=n+1}^{n+m}\dfrac{1}{k!}$ [/mm] setzen und [mm] $(m+n)!y_m<\sum_{k=1}^m(n+1)^{1-k}$ [/mm] zeigen.

Aber diese Ungleichung ist doch in den allermeisten Fällen falsch. Was soll ich wirklich zeigen?

Liebe Grüße,
UniversellesObjekt

        
Bezug
Abschätzung Exponentialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:43 Mi 08.04.2015
Autor: Gonozal_IX

Hallo UniversellesObjekt,

> Aber diese Ungleichung ist doch in den allermeisten Fällen falsch.

Das ist richtig

> Was soll ich wirklich zeigen?

Zeige stattdessen:
$ [mm] (1+n)!y_m<\sum_{k=1}^m(n+1)^{1-k} [/mm] $

Ziel ist es dann wohl zu zeigen, dass $(n+1)!*e [mm] \not\in \IN$ [/mm] für alle n, wodurch sofort die Irrationalität von e folgt.

Gruß,
Gono

Bezug
                
Bezug
Abschätzung Exponentialreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:12 Di 14.04.2015
Autor: UniversellesObjekt

Vielen Dank schon einmal für die Berichtigung der Aufgabe. Die rechte Seite kann ich als geometrische Summe umschreiben zu [mm] $\dfrac{1-1/(n+1)^m}{n/(n+1)}$. [/mm] Wenn ich nun durch $(n+1)!$ teile erhalte ich [mm] $y_m<\dfrac{1-1/(n+1)^m}{nn!}<\dfrac{1}{nn!}$, [/mm] aber dies genügt nicht, um [mm] $e-\sum_{k=0}^n\dfrac{1}{k!}=\lim y_m<\dfrac{1}{nn!}$ [/mm] einzusehen. Wo kann ich schärfer abschätzen?

Liebe Grüße,
UniversellesObjekt

Bezug
                        
Bezug
Abschätzung Exponentialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Di 14.04.2015
Autor: Gonozal_IX

Hiho,

verstehe ich dich richtig, dass dein Problem eigentlich ist, dass du nur [mm] \le [/mm] zeigen kannst, aber die Ungleichung strikt zu zeigen ist?

In dem Fall: Zeige, dass sogar [mm] $(1+n)!y_m<\sum_{k=1}^m(n+2)^{1-k}$ [/mm] gilt und du erhälst sogar [mm] $\lim y_m \le \bruch{n+1}{n+2} \bruch{1}{nn!} [/mm] <   [mm] \bruch{1}{nn!}$ [/mm]

Gruß,
Gono

Bezug
                                
Bezug
Abschätzung Exponentialreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 Di 14.04.2015
Autor: UniversellesObjekt

Stimmt, so geht es. Vielen Dank!

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]