matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Abschätzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Abschätzung
Abschätzung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Fr 08.11.2013
Autor: mathestudent111

Hey leute,

kann mir einer zeigen wie ich folgende Abschätzung beweisen kann.

1-x [mm] \le e^{-x} [/mm]

Danke schonmal.

Gruß

        
Bezug
Abschätzung: Potenzreihe
Status: (Antwort) fertig Status 
Datum: 15:24 Fr 08.11.2013
Autor: Roadrunner

Hallo mathestudent!


Verwende die Potenzreihendarstellung der Exponentialfunktion:   [mm] $\exp(x) [/mm] \ := \ [mm] \summe_{n=0}^{\infty}\bruch{x^n}{n!}$ [/mm]


Gruß vom
Roadrunner

Bezug
                
Bezug
Abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Fr 08.11.2013
Autor: mathestudent111

Ok. Wie ist denn denn die Potenzreihe für [mm] e^{-x}? [/mm]

Eigentlich könnte man die Aussage auch anders herum formulieren.
Also [mm] e^{x} \ge [/mm] 1+x

Es kommt nach der Potenzreihe dann [mm] 1+x+\bruch{x^{2}}{2!}+... [/mm]

Wie kann ich dann zeigen, dass  [mm] \bruch{x^{2}}{2!}+.... \ge [/mm] 0 ist?


Bezug
                        
Bezug
Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Fr 08.11.2013
Autor: schachuzipus

Hallo,


> Ok. Wie ist denn denn die Potenzreihe für [mm]e^{-x}?[/mm]

Na, [mm]e^x=\sum\limits_{k=0}^{\infty}\frac{1}{k!}\cdot{}x^k[/mm]

Also [mm]e^{\red{-x}}=\sum\limits_{k=0}^{\infty}\frac{1}{k!}\cdot{}\red{(-x)}^k \ = \ 1-x+\frac{x^2}{2}-\frac{x^3}{6}\pm\ldots[/mm]

>

> Eigentlich könnte man die Aussage auch anders herum
> formulieren.
> Also [mm]e^{x} \ge[/mm] 1+x

>

> Es kommt nach der Potenzreihe dann
> [mm]1+x+\bruch{x^{2}}{2!}+...[/mm]

>

> Wie kann ich dann zeigen, dass [mm]\bruch{x^{2}}{2!}+.... \ge[/mm] 0 ist?

Dazu fällt mir gerade auch nicht viel ein.

Ich würde das Ganze auch eher mit dem Mittelwertsatz angehen ...

Gruß

schachuzipus
>

Bezug
                                
Bezug
Abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 Sa 09.11.2013
Autor: mathestudent111

Hallo nochmal,

ja ich habe nochmal wegen der Exponentialreihe nachgedacht, aber leider bin ich nicht zu einem Ergebnis gekommen.

Wie könnte ich es denn mit dem MWS machen?

Gruß

Bezug
                                        
Bezug
Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 So 10.11.2013
Autor: fred97


> Hallo nochmal,
>  
> ja ich habe nochmal wegen der Exponentialreihe nachgedacht,
> aber leider bin ich nicht zu einem Ergebnis gekommen.
>  
> Wie könnte ich es denn mit dem MWS machen?


Die Ungleichung

1-x $ [mm] \le e^{-x} [/mm] $

ist gleichbedeutend mit:  [mm] (1-x)e^x \le [/mm] 1.

Setze [mm] f(x)=(1-x)e^x [/mm] -1 und zeige: f(x) [mm] \le [/mm] 0 für alle x [mm] \in \IR. [/mm]

Wegen f(0)=0 stimmt das schon mal für x=0

Sei also x [mm] \ne [/mm] 0. Nach dem MWS gibt es ein s zwischen 0 und x mit

    [mm] f(x)=-sxe^s. [/mm]

Zeigen musst Du noch:  sx [mm] \ge [/mm] 0

FRED

>  
> Gruß


Bezug
                                                
Bezug
Abschätzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:07 Mi 20.11.2013
Autor: mathestudent111

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]