matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesAbschätzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis-Sonstiges" - Abschätzung
Abschätzung < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung: binomischer Lehrsatz
Status: (Frage) beantwortet Status 
Datum: 17:55 Mi 23.03.2011
Autor: bandchef

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Ich soll $10,2^4$ mit binomischen Lehrsatz abschätzen.


Hi Leute!

Meine Lösung:

$(10,2)^2 \geq \begin{pmatrix} 4 \\ 0 \end{pmatrix} \cdot 10 \cdot \left (\frac{2}{10} \right)^0 + \begin{pmatrix} 4 \\ 1 \end{pmatrix} 10 \cdot \left (\frac{2}{10} \right )^1 = 10 + 4 \cdot 2 = 18$


Irgendwie kann aber da was nicht stimmen, da das Ergebnis ja eigentlich kleiner sein sollte...

        
Bezug
Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Mi 23.03.2011
Autor: kamaleonti

Moin bandchef,
> Ich soll [mm]10,2^4[/mm] mit binomischen Lehrsatz abschätzen.
>  
> Hi Leute!
>  
> Meine Lösung:
>  
> [mm](10,2)^2 \geq \begin{pmatrix} 4 \\ 0 \end{pmatrix} \cdot 10 \cdot \left (\frac{2}{10} \right)^0 + \begin{pmatrix} 4 \\ 1 \end{pmatrix} 10 \cdot \left (\frac{2}{10} \right )^1 = 10 + 4 \cdot 2 = 18[/mm]

Du bringst einiges durcheinander. Wende den binomischen Lehrsatz auf [mm] (10+0,2)^4 [/mm] an.
Zur Erinnerung Binomischer Lehrsatz

[mm] \qquad $(10+0,2)^4=\vektor{4\\0}10^4(0,2)^0+\ldots$ [/mm]

>  
>
> Irgendwie kann aber da was nicht stimmen, da das Ergebnis
> ja eigentlich kleiner sein sollte...  

LG

Bezug
                
Bezug
Abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Mi 23.03.2011
Autor: bandchef

$ [mm] (10+0,2)^4=\vektor{4\\0}10^4(0,2)^0+\vektor{4\\1}10^3(0,2)^1+\vektor{4\\2}10^2(0,2)^2 [/mm] = [mm] \vektor{4\\3}10^1(0,2)^3 [/mm] = [mm] \vektor{4\\4}10^0(0,2)^4 [/mm] = 10000 + 800 + 24 + 0,32 + 0,0016 = 10824,3216$


Wie sieht das jetzt bei [mm] $(99)^3$ [/mm] aus? Ich kann ja jetzt da schlecht das hier machen:

$ [mm] (9+0)^3=\vektor{3\\0}99^3(0)^0+\vektor{3\\1}99^2(0)^1+\vektor{3\\2}99^1(0)^2 [/mm] = [mm] \vektor{3\\3}99^0(0)^3 [/mm] = ...$

Wie geht das da jetzt?

Bezug
                        
Bezug
Abschätzung: an runde Werte anlehnen
Status: (Antwort) fertig Status 
Datum: 18:21 Mi 23.03.2011
Autor: Loddar

Hallo bandchef!


Es gilt: [mm]99 \ = \ 100-1[/mm] .


Gruß
Loddar


Bezug
                                
Bezug
Abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Mi 23.03.2011
Autor: bandchef

Wenn ich mich da nun an runde werte anlehne, dann komm ich aber nicht genau auf 970299 was [mm] $99^3$ [/mm] eigentlich ist, ran... Ist das normal?


$ [mm] (100-1)^3=\vektor{3\\0}100^3(1)^0-\vektor{3\\1}100^2(1)^1-\vektor{3\\2}100^1(1)^2 [/mm] = [mm] \vektor{3\\3}100^0(1)^3 [/mm] = 969699 $

Bezug
                                        
Bezug
Abschätzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Mi 23.03.2011
Autor: fred97


> Wenn ich mich da nun an runde werte anlehne


Was soll das denn bedeuten ?

FRED

> , dann komm ich
> aber nicht genau auf 970299 was [mm]99^3[/mm] eigentlich ist, ran...
> Ist das normal?


Bezug
                                        
Bezug
Abschätzung: vorrechnen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:31 Mi 23.03.2011
Autor: Loddar

Hallo!


Dann rechne mal bitte hier vor.


Gruß
Loddar


Bezug
                                                
Bezug
Abschätzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:37 Mi 23.03.2011
Autor: bandchef

Ich glaub da hat sich ein edit überschnitten!

Bezug
                                        
Bezug
Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Mi 23.03.2011
Autor: leduart

Hallo
in deiner formel ist ein vorzeichenfehler un ein glied fehlt!
natürlich ist die bin. formel exakt! also hast du immer einen fehler gemacht, wenn du nicht [mm] 99^3 [/mm] rauskriegst.
gruss leduart


Bezug
                                                
Bezug
Abschätzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:45 Mi 23.03.2011
Autor: bandchef

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

$ (100-1)^3=\left [\vektor{3\\0}100^3(-1)^0\right ] + \left[\vektor{3\\1}100^2(1)^1 \right] + \left[ \vektor{3\\2}100^1(1)^2 \right ] + \left[ \vektor{3\\3}100^0(1)^3 \right ]= 1000000 + (-30000) + 300 + (-1) =  970299$

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]