matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenAbschätzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Abschätzen
Abschätzen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Mi 22.08.2007
Autor: crexe

Aufgabe
[mm] \integral_{1}^{\infty}{\ln(x)/(x*\wurzel{x^2-1}) dx} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


habe hier ein Problem bei der Abschätzung (was im Punkt x=1 passiert ist mir klar):



[mm] \integral_{\wurzel{2}}^{\infty}{\ln(x)/(x*\wurzel{x^2-1}) dx}<\wurzel{2}*\integral_{\wurzel{2}}^{\infty}{\ln(x)/(x^2) dx}<\integral_{\wurzel{2}}^{\infty}{\wurzel{x}/(x^2) dx} [/mm]

bei beiden abschätzungen ist mir nicht ganz klar was passiert, sonst is das Beispiel logisch (die Konvergenz des Integrals ist zu zeigen).

danke im voraus

mfg

        
Bezug
Abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Mi 22.08.2007
Autor: Somebody


> [mm]\integral_{1}^{\infty}{\ln(x)/(x*\wurzel{x^2-1}) dx}[/mm]
>  Ich
> habe diese Frage in keinem Forum auf anderen Internetseiten
> gestellt.
>
>
> habe hier ein Problem bei der Abschätzung (was im Punkt x=1
> passiert ist mir klar):
>  
>
>
> [mm]\integral_{\wurzel{2}}^{\infty}{\ln(x)/(x*\wurzel{x^2-1}) dx}<\wurzel{2}*\integral_{\wurzel{2}}^{\infty}{\ln(x)/(x^2) dx}<\integral_{\wurzel{2}}^{\infty}{\wurzel{x}/(x^2) dx}[/mm]
>  
> bei beiden abschätzungen ist mir nicht ganz klar was
> passiert, sonst is das Beispiel logisch (die Konvergenz des
> Integrals ist zu zeigen).
>  

Ich verstehe nicht, weshalb man diese Abschätzung zum Nachweis der Konvergenz des Integrals an der oberen Grenze überhaupt so spezifisch machen sollte. Wegen
[mm]\lim_{x\rightarrow +\infty}\frac{\frac{\ln(x)}{x\sqrt{x^2-1}}}{\frac{\ln(x)}{x^2}}=\lim_{x\rightarrow +\infty}\frac{x^2}{x^2\sqrt{1-\frac{1}{x^2}}}=1[/mm]

sind [mm] $\frac{\ln(x)}{x\sqrt{x^2-1}}$ [/mm] und [mm] $\frac{\ln(x)}{x^2}$ [/mm] für den Grenzübergang [mm] $x\rightarrow +\infty$ [/mm] asymptotisch gleich, d.h. es gibt jedenfalls ein [mm] $x_0$ [/mm] und eine Konstante $k>1$, so dass für alle [mm] $x\geq x_0$ [/mm] gilt:
[mm]0\leq \frac{\ln(x)}{x\sqrt{x^2-1}}
Das genügt für den Nachweis, dass das Integral von [mm] $\frac{\ln(x)}{x\sqrt{x^2-1}}$ [/mm] an der oberen Grenze [mm] $+\infty$ [/mm] jedenfalls konvergiert, falls das Integral von [mm] $\frac{\ln(x)}{x^2}$ [/mm] an derselben oberen Grenze konvergiert.

Besser als dieser Zwischenschritt wäre gleich zu zeigen, dass
[mm]\lim_{x\rightarrow +\infty}\frac{\frac{\ln(x)}{x\sqrt{x^2-1}}}{\frac{\sqrt{x}}{x^2}}=\lim_{x\rightarrow +\infty}\frac{\ln(x)\cdot x^2}{\sqrt{x}\cdot x^2\cdot\sqrt{1-\frac{1}{x^2}}}=\lim_{x\rightarrow +\infty}\frac{\ln(x)}{\sqrt{x}}=0[/mm]

weshalb ab einem gewissen [mm] $x_0$ [/mm] gelten muss, dass
[mm]0\leq \frac{\ln(x)}{x\sqrt{x^2-1}} < \frac{\sqrt{x}}{x^2}[/mm]

so dass man das Integral von [mm] $\frac{\ln(x)}{x^2}$, [/mm] das in Deiner Abschätzung dazwischengeschaltet war, gleich weglassen kann. [mm] $x_0$ [/mm] braucht man nicht zu kennen, es genügt zu wissen, dass es ein solches [mm] $x_0$ [/mm] gibt: das genügt für den Nachweis der Konvergenz an der oberen Grenze [mm] $+\infty$. [/mm]


Bezug
                
Bezug
Abschätzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Mi 22.08.2007
Autor: crexe

vielen dank für die schnelle antwort.
diese abschätzungen stammen aus der musterlösung dieses beispiels, und ich hab einfach ned genau mitkriegt wie hier abgeschätzt wird.

mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]