matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenAbschätzen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Abschätzen
Abschätzen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Fr 19.01.2007
Autor: ueberforderter_Ersti

Aufgabe
Zeige, dass [mm] \sqrt{x+y} [/mm] < [mm] \sqrt{x} [/mm] + [mm] \sqrt{y} [/mm] für alle x,y [mm] \in \IR_{+} [/mm]

Guten Abend! ich stecke da irgendwie fest.. Es scheint mir eigentlich nicht sooo schwierig, aber irgendwie weiss ich auch nicht, wie ich das zeigen kann.. Ich hätte als Erklärung einfach geschrieben: da x,y [mm] \in \IR_{+}. [/mm] Oder gibts hier noch gross was zu beweisen?
Vielen Dank für die Hilfe Ersti

p.s. Ich habe diese Frage in keinem anderen Internetforum publiziert.

        
Bezug
Abschätzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:25 Fr 19.01.2007
Autor: ueberforderter_Ersti

ok ich sollte nächstes mal denken bevor ich poste..
Dreiecksungleichung ist der Ansatz, nicht? Und dann einfach, dass die Null nicht enthalten ist in [mm] \IR_{+} [/mm] also ist es > und nicht [mm] \ge [/mm]
Und schlussendlich die Begründung, dass die Relationen gewahrt werden durch die Wurzel, oder?

Bezug
        
Bezug
Abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Fr 19.01.2007
Autor: VNV_Tommy

Hallo ueberforderter_Ersti!

> Zeige, dass [mm]\sqrt{x+y}[/mm] < [mm]\sqrt{x}[/mm] + [mm]\sqrt{y}[/mm] für alle x,y
> [mm]\in \IR_{+}[/mm]
>  Guten Abend! ich stecke da irgendwie fest.. Es
> scheint mir eigentlich nicht sooo schwierig, aber irgendwie
> weiss ich auch nicht, wie ich das zeigen kann.. Ich hätte
> als Erklärung einfach geschrieben: da x,y [mm]\in \IR_{+}.[/mm] Oder
> gibts hier noch gross was zu beweisen?
>  Vielen Dank für die Hilfe Ersti
>  
> p.s. Ich habe diese Frage in keinem anderen Internetforum
> publiziert.

Quadriere doch mal auf beiden Seiten der Ungleichung:

[mm](\sqrt{x+y})^{2} < (\sqrt{x}+\sqrt{y})^{2}[/mm]

Auf der linken Seite sollten sich Wurzel und Quadrat aufheben, auf der rechten Seite sollte die erste binomische Formel weiter helfen:

[mm]x+y < x+2\sqrt{xy}+y [/mm]

Auf beiden Seiten nun [mm]-x[/mm] und [mm]-y[/mm] gerechnet und es sollte sich ergeben:

[mm]0 < 2\sqrt{xy}[/mm]

Diese Aussage zu beweisen sollte nich allzu schwer sein, oder? ;-)

Vielleicht hilft dir das weiter?

Gruß,
Tommy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]