matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenAbs/Bed Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Abs/Bed Konvergenz
Abs/Bed Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abs/Bed Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:11 So 08.11.2009
Autor: Roli772

Aufgabe
Zeigen Sie, ob folgende Reihe
[mm] \summe_{k=1}^{\infty} ((-3)^{k-1}) [/mm] / [mm] (4^{k-1})) [/mm]
abs. bzw. bed. konvergiert und berechnen Sie ihren RW.

Hi an alle!

Vielleicht kann mir hier jemand weiterhelfen:
Soll eben Reihe auf Konvergenzverhalten untersuchen.
Hab mir gedacht, ich probiere es mal mit dem Leibnitz'schen Konv-Krit:
dazu muss  ja für [mm] \summe_{k=1}^{\infty} (-1)^{k} a_{k} [/mm] gelten: 1. [mm] a_{k} \ge [/mm] 0 [mm] \forall [/mm] n 2. [mm] a_{k} [/mm] monoton fallend 3. [mm] a_{k} [/mm] --> 0

aber wie sieht mein [mm] a_{k} [/mm] in diesem fall aus? Oder ist hier ein anderes Kriterium besser?

Reihenwert wäre dann der lim von dieser Reihe, wie ich ihn aber berechne hab ich auch keinen Ansatz.

Würde mich über eure Vorschläge freuen!
Danke für eure Zeit,
lg Sr

        
Bezug
Abs/Bed Konvergenz: geometrische Reihe
Status: (Antwort) fertig Status 
Datum: 12:17 So 08.11.2009
Autor: Loddar

Hallo roli!


Forme um wie folgt, und du erhältst eine schöne []geometrische Reihe:

[mm] $$\summe_{k=1}^{\infty} \bruch{(-3)^{k-1}}{4^{k-1}} [/mm] \ = \ [mm] \summe_{k=1}^{\infty} \left(-\bruch{3}{4}\right)^{k-1}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Abs/Bed Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:42 So 08.11.2009
Autor: Roli772

Danke für deine schnelle Antwort!!

> Forme um wie folgt, und du erhältst eine schöne
> []geometrische Reihe:
>  
> [mm]\summe_{k=1}^{\infty} \bruch{(-3)^{k-1}}{4^{k-1}} \ = \ \summe_{k=1}^{\infty} \left(-\bruch{3}{4}\right)^{k-1}[/mm]

ja super! Dann gilt:
[mm] \summe_{k=1}^{\infty} x^{n} [/mm] konv [mm] \gdw [/mm] |x| < 1

|(-3/4)| < 1 ... passt, somit Reihe konvergent und Limes beträgt:
1 / (1-x) = 4/7
richtig so?

lg Sr



Bezug
                        
Bezug
Abs/Bed Konvergenz: richtig
Status: (Antwort) fertig Status 
Datum: 12:48 So 08.11.2009
Autor: Loddar

Hallo Roli!


Die Berechnung des Grenzwertes ist sehr lax aufgeschrieben (da ddie indexverschiebung nicht erläutert wurde).

Aber das Ergebnis ist korrekt.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]