matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieAbrundungsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Abrundungsfunktion
Abrundungsfunktion < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abrundungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Mo 21.01.2013
Autor: DudiPupan

Aufgabe
Zu zeigen:
[mm] $b<(\lfloor \sqrt{b}\rfloor+1)^2-1$ [/mm]
Wobei [mm] $b\in\mathbb{N}$ [/mm] keine Quadratzahl ist.

Guten Abend zusammen,
ich muss diese Ungleichung für einen Beweis per Schubfachprinzip zeigen, jedoch komme ich einfach nicht weiter.
Ich weiß ja, dass gilt: [mm] $\sqrt{b}<(\lfloor \sqrt{b}\rfloor+1)$,bzw. $b<(\lfloor \sqrt{b}\rfloor+1)^2$. [/mm]
Jedoch stört mich das $-1$ am Ende und ich komme einfach nicht weiter.
Würde mich sehr über Tipps freuen.

Vielen Dank
Liebe Grüße
Dudi

        
Bezug
Abrundungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mo 21.01.2013
Autor: reverend

Hallo Lucas,

vielleicht verstehe ich den Sinn der Aufgabe ja nicht, oder ich sehe das Problem einfach nicht...

> Zu zeigen:
>  [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2-1[/mm]

Nur um sicherzugehen: [mm] \lfloor{x}\rfloor [/mm] bezeichnet die untere Gaußklammer, ja?

>  Wobei [mm]b\in\mathbb{N}[/mm]
> keine Quadratzahl ist.

Das scheint keine nötige Einschränkung zu sein.

>  Guten Abend zusammen,
>  ich muss diese Ungleichung für einen Beweis per
> Schubfachprinzip zeigen,

Ich kenne das Schubfachprinzip, aber wie es sich hierher verirren konnte, ist mir rätselhaft.

> jedoch komme ich einfach nicht
> weiter.
>  Ich weiß ja, dass gilt: [mm]\sqrt{b}<(\lfloor \sqrt{b}\rfloor+1)[/mm],bzw.
> [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2[/mm].
>  Jedoch stört mich das [mm]-1[/mm]
> am Ende und ich komme einfach nicht weiter.

Untersuche alle [mm] b=a^2-1 [/mm] mit [mm] a\in\IN. [/mm] Schlimmer kanns ja nicht kommen. :-)
Dann musst Du natürlich noch zeigen, warum damit alle [mm] b\in\IN [/mm] erledigt sind.

>  Würde mich sehr über Tipps freuen.

Grüße
reverend


Bezug
                
Bezug
Abrundungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:16 Mo 21.01.2013
Autor: DudiPupan

Hallo,

vielen Dank für die Antwort.

> Hallo,
>  
> > Zu zeigen:
>  >  [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2-1[/mm]
>  >  Wobei
> [mm]b\in\mathbb{N}[/mm]
> > keine Quadratzahl ist.
>  >  Guten Abend zusammen,
>  >  ich muss diese Ungleichung für einen Beweis per
> > Schubfachprinzip zeigen, jedoch komme ich einfach nicht
> > weiter.
>  >  Ich weiß ja, dass gilt: [mm]\sqrt{b}<(\lfloor \sqrt{b}\rfloor+1)[/mm],bzw.
> > [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2[/mm].
>  >  Jedoch stört mich
> das [mm]-1[/mm]
> > am Ende und ich komme einfach nicht weiter.
>  >  Würde mich sehr über Tipps freuen.
>  
> ich weiß auch nicht, was das mit dem Schubfachprinzip zu
> tun hat.

Es geht um Paare [mm] $(x,y)\in\{0,1,\ldots,\lfloor b \rfloor\}, ((x,y)\neq [/mm] (0,0)$
Nun brauche ich, dass es mehr Paare $(x,y)$ als Restklassen modulo b gibt.
>Aber Du

>  kannst o.E. sagen, dass
>  [mm]b=\lfloor b \rfloor +e[/mm]
>  mit einem [mm]0 \le e=e_b < 1\,.[/mm]
>  

Das habe ich schon versucht.
Ich komme auf:
[mm] $(\lfloor \sqrt{b}\rfloor+1)^2-1=(\sqrt{b}+1-x)^2-1=b+2\sqrt{b}(1-x)+(1-x)^2-1$. [/mm]
Jedoch sehe ich hier auch nicht, wie ich auf kleiner b komme.

> Einsetzen und (mit Äquivalenzumformungen) "lorechnen"!
>  
> P.S. Öhm... wenn [mm]b \in \IN\,,[/mm] dann ist sogar stets
> [mm]e=e_b=0\,[/mm]; stimmt
> die Aufgabenstellung? Ich meine, dann reduziert sich wegen
> [mm]b=\lfloor b\rfloor[/mm] auf
>  [mm]b < (b+1)^2-1\,.[/mm]
>  Das ist ja schon trivial...

Es soll doch gelten: [mm] $b<(\lfloor {\bf{\sqrt{b}}}\rfloor+1)^2-1$. [/mm]

Vielen Dank

Liebe Grüße
Dudi

>  
> Gruß,
>    Marcel

Bezug
                        
Bezug
Abrundungsfunktion: Erneut korrigiert!
Status: (Antwort) fertig Status 
Datum: 22:29 Mo 21.01.2013
Autor: Marcel

Hallo Dudi,

edit: korrigiert!

wenn Du so rechnest, wie ich es

    hier (klick!)

vorgeschlagen habe, reduziert sich Behauptung auf die offensichtlich
kommt man zur "wahren" Ungleichung
$$0 [mm] \le \xi \red{\;\le\;} \frac{2*\lfloor \sqrt{b} \rfloor}{2*\lfloor \sqrt{b} \rfloor+\red{\xi}}\,.$$ [/mm]

P.S. Okay, vielleicht sollte man sowas wie [mm] $\xi$ [/mm] anstatt [mm] $e\,$ [/mm] wählen. Das
war 'n blöder Variablenname - daher geändert!

Gruß,
  Marcel

Bezug
                                
Bezug
Abrundungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 Mo 21.01.2013
Autor: DudiPupan

Hallo Marcel,

vielen vielen Dank für deine Antwort.

So müsste es funktionieren.

Vielen Dank und einen schönen Abend

Liebe Grüße
Dudi

Bezug
                                
Bezug
Abrundungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:07 Di 22.01.2013
Autor: DudiPupan


> Hallo Dudi,
>  
> edit: korrigiert!
>  
> wenn Du so rechnest, wie ich es
>
> hier (klick!)
>  
> vorgeschlagen habe, reduziert sich Behauptung auf die
> offensichtlich wahre
>  Ungleichung
>  [mm]0 \le \xi < \frac{2*\lfloor \sqrt{b} \rfloor}{2*\lfloor \sqrt{b} \rfloor+\red{\xi}}\,.[/mm]

Hallo nochmal,

ich stehe gerade irgendwie auf dem Schlauch.
Ich sehe nicht, warum diese Ungleichung offensichtlich gilt.
Kann ich das noch irgendwie zeigen oder weiter vereinfachen?

Vielen Dank
Liebe Grüße
Dudi

>  
> P.S. Okay, vielleicht sollte man sowas wie [mm]\xi[/mm] anstatt [mm]e\,[/mm]
> wählen. Das
>  war 'n blöder Variablenname - daher geändert!
>  
> Gruß,
>    Marcel


Bezug
                                        
Bezug
Abrundungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Di 22.01.2013
Autor: Marcel

Hallo,

> > Hallo Dudi,
>  >  
> > edit: korrigiert!
>  >  
> > wenn Du so rechnest, wie ich es
> >
> > hier (klick!)
>  >  
> > vorgeschlagen habe, reduziert sich Behauptung auf die
> > offensichtlich wahre
>  >  Ungleichung
>  >  [mm]0 \le \xi < \frac{2*\lfloor \sqrt{b} \rfloor}{2*\lfloor \sqrt{b} \rfloor+\red{\xi}}\,.[/mm]
>  
> Hallo nochmal,
>  
> ich stehe gerade irgendwie auf dem Schlauch.
>  Ich sehe nicht, warum diese Ungleichung offensichtlich
> gilt.
>  Kann ich das noch irgendwie zeigen oder weiter
> vereinfachen?

reverend hat Recht - ich hatte da auch logisch "falsch herum" gedacht.
Wenn ich das richtig sehe:
Sei $a [mm] \in \IN$ [/mm] und wir betrachten alle natürlichen [mm] $b\,$ [/mm] mit [mm] $a^2 \le [/mm] b < [mm] (a+1)^2\,.$ [/mm]
Dann reicht es doch, die zu beweisende Ungleichung für [mm] $b=(a+1)^2-1$ [/mm] zu beweisen,
um herauszufinden, dass sie auch für alle [mm] $a^2 \le [/mm] b < [mm] (a+1)^2$ [/mm] gilt, denn
[mm] $(a+1)^2-1$ [/mm] ist "die größte natürlich Zahl im Intervall [mm] $[a^2,(a+1)^2)$", [/mm] und
natürlich gilt für alle natürlichen [mm] $b\,$ [/mm] mit [mm] $a^2 \le [/mm] b < [mm] (a+1)^2$ [/mm] doch [mm] $\lfloor \sqrt{b} \rfloor=a\,.$ [/mm]
Deswegen der Hinweis von reverend: Im Prinzip benutzt er nur, dass [mm] $\sqrt{\cdot}\,$ [/mm] (streng)
monoton wachsend ist! Was mich gerade irritiert, ist, dass meine
Ungleichung oben nicht äquivalent zur Behauptung ist - auch, wenn diese
Ungleichung von oben vielleicht doch eher nicht ganz offensichtlich wahr ist.
Das rechne ich aber nachher nochmal nach!

Edit: Deine Ungleichung stimmt so genau dann, wenn [mm] $b+1\,$ [/mm] keine
Quadratzahl ist [mm] $\blue{\text{und zudem }} [/mm] b [mm] \not=1$ [/mm] - denn $b [mm] \in \IN \setminus \{1\}$ [/mm] darf durchaus eine Quadratzahl sein.Denn das
entnimmst Du sofort obigen Überlegungen:
Wenn [mm] $a^2 \le [/mm] b < [mm] (a+1)^2-1\,,$ [/mm] dann ist halt insbesondere $b < [mm] (a+1)^2-1\,.$ [/mm] Und hier
ist ja [mm] $\lfloor \sqrt{b} \rfloor=a\,.$
[/mm]

Gruß,
  Marcel

Bezug
                                
Bezug
Abrundungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:29 Di 22.01.2013
Autor: reverend

Hallo Marcel,

> wenn Du so rechnest, wie ich es
>
> hier (klick!)
>  
> vorgeschlagen habe, reduziert sich Behauptung auf die
> offensichtlich wahre
>  Ungleichung
>  [mm]0 \le \xi < \frac{2*\lfloor \sqrt{b} \rfloor}{2*\lfloor \sqrt{b} \rfloor+\red{\xi}}\,.[/mm]

Für [mm] b=a^2+2a=(a+1)^2-1, a\in\IN [/mm] ist die Ungleichung nicht wahr. Dazu müsste man noch das rechte Relationszeichen in ein [mm] $\le$ [/mm] umwandeln. Dann passts.

Das ist im übrigen der Grund, warum ich die Untersuchung gerade solcher Zahlen vorgeschlagen hatte. ;-)

Grüße
reverend


Bezug
                                        
Bezug
Abrundungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:42 Di 22.01.2013
Autor: Marcel

Hallo reverend,

> Hallo Marcel,
>  
> > wenn Du so rechnest, wie ich es
> >
> > hier (klick!)
>  >  
> > vorgeschlagen habe, reduziert sich Behauptung auf die
> > offensichtlich wahre
>  >  Ungleichung
>  >  [mm]0 \le \xi < \frac{2*\lfloor \sqrt{b} \rfloor}{2*\lfloor \sqrt{b} \rfloor+\red{\xi}}\,.[/mm]
>  
> Für [mm]b=a^2+2a=(a+1)^2-1, a\in\IN[/mm] ist die Ungleichung nicht
> wahr. Dazu müsste man noch das rechte Relationszeichen in
> ein [mm]\le[/mm] umwandeln. Dann passts.

okay, mir ist nicht klar, warum das nicht der Fall sein sollte - denn der
Nenner rechterhand ist stets [mm] $\le 1\,.$ [/mm] Ich teste das jetzt mal:
Sei [mm] $a=2\,,$ [/mm] dann ist [mm] $b=(a+1)^2-1=8\,.$ [/mm] Ferner ist [mm] $\lfloor [/mm] b [mm] \rfloor=2\,.$ [/mm]
Es folgt
[mm] $$\xi=\sqrt{8}-2=0.8284\ldots \in [0,1)\,.$$ [/mm]
Okay, ich seh's: Rechterhand gehört tatächlich ein [mm] $\le\,$ [/mm] hin. Ich hatte
"falsch herum" gefolgert...

Danke, ich ändere das!
  

> Das ist im übrigen der Grund, warum ich die Untersuchung
> gerade solcher Zahlen vorgeschlagen hatte. ;-)

Okay - das war mir aber nicht so ganz klar. :-) (Ich wollte eine rechnerische
Alternative vorschlagen!)

Gruß,
  Marcel

Bezug
        
Bezug
Abrundungsfunktion: Variablenname angepasst!
Status: (Antwort) fertig Status 
Datum: 22:24 Mo 21.01.2013
Autor: Marcel

Hallo,

> Zu zeigen:
>  [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2-1[/mm]
>  Wobei [mm]b\in\mathbb{N}[/mm]
> keine Quadratzahl ist.
>  Guten Abend zusammen,
>  ich muss diese Ungleichung für einen Beweis per
> Schubfachprinzip zeigen, jedoch komme ich einfach nicht
> weiter.
>  Ich weiß ja, dass gilt: [mm]\sqrt{b}<(\lfloor \sqrt{b}\rfloor+1)[/mm],bzw.
> [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2[/mm].
>  Jedoch stört mich das [mm]-1[/mm]
> am Ende und ich komme einfach nicht weiter.
>  Würde mich sehr über Tipps freuen.

ich weiß auch nicht, was das ganze mit dem Schubfachprinzip zu tun hat.
Man kann es vielleicht so angehen: Man schreibt
[mm] $$\sqrt{b}=\lfloor \sqrt{b}\rfloor +\red{\xi}$$ [/mm]
mit einem $0 [mm] \le \red{\xi}=\red{\xi_b} [/mm] < [mm] 1\,,$ [/mm] daraus folgt
[mm] $$b={\sqrt{b}\,}^2=(\lfloor \sqrt{b}\rfloor +\red{\xi})^2=\ldots...$$ [/mm]

Gruß,
  Marcel

Bezug
        
Bezug
Abrundungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:35 Di 22.01.2013
Autor: felixf

Moin!

> Zu zeigen:
>  [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2-1[/mm]
>  Wobei [mm]b\in\mathbb{N}[/mm]
> keine Quadratzahl ist.

Mal eine Frage, warum macht ihr das alle so kompliziert? ;-)

Es gilt doch [mm] $n^2 [/mm] + (2n+1) = [mm] (n+1)^2$. [/mm] Deswegen kann man $b$ schreiben als $b = [mm] \hat{b}^2 [/mm] + k$ mit [mm] $\hat{b} [/mm] = [mm] \lfloor\sqrt{b}\rfloor$ [/mm] und $0 [mm] \le [/mm] k [mm] \le [/mm] 2 [mm] \hat{b}$. [/mm]

Damit erhaelt man sofort [mm] $(\lfloor\sqrt{b}\rfloor [/mm] + [mm] 1)^2 [/mm] - 1 = [mm] (\hat{b} [/mm] + [mm] 1)^2 [/mm] - 1 = [mm] \hat{b}^2 [/mm] + 2 [mm] \hat{b}$. [/mm] Da $k [mm] \le [/mm] 2 [mm] \hat{b}$ [/mm] ist folgt also sofort $b [mm] \le (\lfloor\sqrt{b}\rfloor [/mm] + [mm] 1)^2 [/mm] - 1$, und man sieht auch sofort, in welchem Fall man Gleichheit hat: und zwar wenn $k = 2 [mm] \hat{b}$ [/mm] ist, also $b = [mm] (\hat{b} [/mm] + [mm] 1)^2 [/mm] - 1$ ist, also eins kleiner als die naechste Quadratzahl. (Das sind genau die Zahlen, die Reverend vorgeschlagen hat zu untersuchen.) Insbesondere gilt die strikte Ungleichung auch fuer Quadratzahlen, allerdings nicht fuer Zahlen die eins kleiner sind.

LG Felix


Bezug
                
Bezug
Abrundungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:03 Di 22.01.2013
Autor: Marcel

Hallo Felix,

> Moin!
>  
> > Zu zeigen:
>  >  [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2-1[/mm]
>  >  Wobei
> [mm]b\in\mathbb{N}[/mm]
> > keine Quadratzahl ist.
>  
> Mal eine Frage, warum macht ihr das alle so kompliziert?
> ;-)

kompliziert ist Ansichtssache. ;-)

> Es gilt doch [mm]n^2 + (2n+1) = (n+1)^2[/mm]. Deswegen kann man [mm]b[/mm]
> schreiben als [mm]b = \hat{b}^2 + k[/mm] mit [mm]\hat{b} = \lfloor\sqrt{b}\rfloor[/mm]
> und [mm]0 \le k \le 2 \hat{b}[/mm].
>  
> Damit erhaelt man sofort [mm](\lfloor\sqrt{b}\rfloor + 1)^2 - 1 = (\hat{b} + 1)^2 - 1 = \hat{b}^2 + 2 \hat{b}[/mm].
> Da [mm]k \le 2 \hat{b}[/mm] ist folgt also sofort [mm]b \le (\lfloor\sqrt{b}\rfloor + 1)^2 - 1[/mm],
> und man sieht auch sofort, in welchem Fall man Gleichheit
> hat: und zwar wenn [mm]k = 2 \hat{b}[/mm] ist, also [mm]b = (\hat{b} + 1)^2 - 1[/mm]
> ist, also eins kleiner als die naechste Quadratzahl. (Das
> sind genau die Zahlen, die Reverend vorgeschlagen hat zu
> untersuchen.) Insbesondere gilt die strikte Ungleichung
> auch fuer Quadratzahlen, allerdings nicht fuer Zahlen die
> eins kleiner sind.

Ja, denn das war das irritierende: Es gilt doch etwa
$$8 [mm] \le (2+1)^2-1\,,$$ [/mm]
weil [mm] $8=8\,,$ [/mm] aber
$$8 < [mm] (2+1)^2-1=8$$ [/mm]
ist Unsinn. Das war mir gestern auch nicht aufgefallen...

Gruß,
  Marcel

Bezug
                
Bezug
Abrundungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:50 Di 22.01.2013
Autor: Marcel

Hallo Felix,

> Moin!
>  
> > Zu zeigen:
>  >  [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2-1[/mm]
>  >  Wobei
> [mm]b\in\mathbb{N}[/mm]
> > keine Quadratzahl ist.
>  
> Mal eine Frage, warum macht ihr das alle so kompliziert?
> ;-)
>  
> Es gilt doch [mm]n^2 + (2n+1) = (n+1)^2[/mm]. Deswegen kann man [mm]b[/mm]
> schreiben als [mm]b = \hat{b}^2 + k[/mm] mit [mm]\hat{b} = \lfloor\sqrt{b}\rfloor[/mm]
> und [mm]0 \le k \le 2 \hat{b}[/mm].
>  
> Damit erhaelt man sofort [mm](\lfloor\sqrt{b}\rfloor + 1)^2 - 1 = (\hat{b} + 1)^2 - 1 = \hat{b}^2 + 2 \hat{b}[/mm].
> Da [mm]k \le 2 \hat{b}[/mm] ist folgt also sofort [mm]b \le (\lfloor\sqrt{b}\rfloor + 1)^2 - 1[/mm],
> und man sieht auch sofort, in welchem Fall man Gleichheit
> hat: und zwar wenn [mm]k = 2 \hat{b}[/mm] ist, also [mm]b = (\hat{b} + 1)^2 - 1[/mm]
> ist, also eins kleiner als die naechste Quadratzahl. (Das
> sind genau die Zahlen, die Reverend vorgeschlagen hat zu
> untersuchen.) Insbesondere gilt die strikte Ungleichung
> auch fuer Quadratzahlen, allerdings nicht fuer Zahlen die
> eins kleiner sind.

ich hab' mir das nun so überlegt:
Für $b [mm] \in \IN$ [/mm] mit [mm] $\red{b\;>\;1}$ [/mm] gibt's (genau) ein $a [mm] \in \IN$ [/mm] mit
[mm] $$a^2 \le [/mm] b < [mm] (a+1)^2\,,$$ [/mm]
nämlich [mm] $a:=\lfloor \sqrt{b} \rfloor\,.$ [/mm]

Mit [mm] $a:=\lfloor \sqrt{b} \rfloor$ [/mm] folgt die zu beweisende Ungleichung
wegen
$$b < [mm] (a+1)^2-1=(\lfloor \sqrt{b} \rfloor+1)^2-1\,,$$ [/mm]
sofern denn $b [mm] \not=1$ [/mm] und [mm] $b+1\,$ [/mm] keine Quadratzahl ist. [mm] $\text{(}$Denn [/mm] wenn
[mm] $b+1\,$ [/mm] keine Quadratzahl ist, so gilt ja
$$b [mm] \le (a+1)^2-2=(\lfloor \sqrt{b}\rfloor +1)^2-2\,. \text{)}$$ [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]