matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitungsregeln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Ableitungsregeln
Ableitungsregeln < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungsregeln: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:54 Mi 15.12.2010
Autor: ella87

Aufgabe
Seien [mm] D \subset \IR [/mm], [mm] f^{ }: D \to \IR [/mm] eine reelle auf ganz [mm] D^ [/mm] differenzierbare Funktion und [mm] a^{ },b^{ },c^{ },d^{ }\in \IR[/mm] beliebig. Beweisen Sie, dass für eine Funktion [mm]g^{ }: D^{ }\to \IR [/mm] die folgenden Gesetze gelten:

(a) [mm] g(x) = f(x) +a [/mm]  [mm] \Rightarrow [/mm]  [mm] g'(x) = f'(x)[/mm]

(b) [mm] g(x) = b*f(x) [/mm]  [mm] \Rightarrow [/mm]  [mm] g'(x) = b*f'(x)[/mm]

(c) [mm] g(x) = f(x+c) [/mm]  [mm] \Rightarrow [/mm]  [mm] g'(x) = f'(x+c)[/mm]

(d) [mm]g(x) = f(d*x) [/mm]  [mm] \Rightarrow [/mm]  [mm] g'(x) = d*f'(d*x)[/mm]


ich bin mir nicht sicher, ob es wirklich so simpel ist....

(a) [mm]\bruch{g(x+\Delta x) - g(x)}{\Delta x} [/mm] = [mm]\bruch{f(x+\Delta x)+a -( f(x)+a)}{\Delta x} [/mm] = [mm]\bruch{f(x+\Delta x) - f(x)}{\Delta x} [/mm]

da  [mm] f^{ }[/mm] auf ganz [mm] D^{ }[/mm] differenzierbar ist und da jetzt der Differenzenquotient steht, ist
[mm]\bruch{f(x+\Delta x) - f(x)}{\Delta x} [/mm] = [mm] f'(x) [/mm] für [mm] \Delta x \to 0 [/mm]

wars das schon? Kann man das so begründen?

        
Bezug
Ableitungsregeln: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Mi 15.12.2010
Autor: schachuzipus

Hallo ella87,

> Seien [mm]D \subset \IR [/mm], [mm]f^{ }: D \to \IR[/mm] eine reelle auf ganz
> [mm]D^[/mm] differenzierbare Funktion und [mm]a^{ },b^{ },c^{ },d^{ }\in \IR[/mm]
> beliebig. Beweisen Sie, dass für eine Funktion [mm]g^{ }: D^{ }\to \IR[/mm]
> die folgenden Gesetze gelten:
>
> (a) [mm]g(x) = f(x) +a[/mm] [mm]\Rightarrow[/mm] [mm]g'(x) = f'(x)[/mm]
>
> (b) [mm]g(x) = b*f(x) [/mm] [mm]\Rightarrow[/mm] [mm]g'(x) = b*f'(x)[/mm]
>
> (c) [mm]g(x) = f(x+c)[/mm] [mm]\Rightarrow[/mm] [mm]g'(x) = f'(x+c)[/mm]
>
> (d) [mm]g(x) = f(d*x)[/mm] [mm]\Rightarrow[/mm] [mm]g'(x) = d*f'(d*x)[/mm]
> ich bin
> mir nicht sicher, ob es wirklich so simpel ist....
>
> (a) [mm]\bruch{g(x+\Delta x) - g(x)}{\Delta x}[/mm] =
> [mm]\bruch{f(x+\Delta x)+a -( f(x)+a)}{\Delta x}[/mm] =
> [mm]\bruch{f(x+\Delta x) - f(x)}{\Delta x}[/mm]
>
> da [mm]f^{ }[/mm] auf ganz [mm]D^{ }[/mm] differenzierbar ist und da jetzt
> der Differenzenquotient steht, ist
> [mm]\bruch{f(x+\Delta x) - f(x)}{\Delta x}[/mm] = [mm]f'(x)[/mm] für [mm]\Delta x \to 0[/mm]
>
> wars das schon? Kann man das so begründen?

Jo, sieht gut aus !

Gruß

schachuzipus


Bezug
                
Bezug
Ableitungsregeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 Mi 15.12.2010
Autor: ella87

kurze Frage zur (d):

ist [mm]f (d*x) = d*f(x) [/mm]?

Bezug
                        
Bezug
Ableitungsregeln: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Mi 15.12.2010
Autor: fred97


> kurze Frage zur (d):
>  
> ist [mm]f (d*x) = d*f(x) [/mm]?


Nein. Ist z.B. [mm] f(x)=x^2, [/mm] so ist f(dx)= [mm] (dx)^2= d^2*x^2 [/mm]

Oder: f(x) [mm] =e^x [/mm]  ---> [mm] f(dx)=e^{dx} [/mm]


FRED

Bezug
                                
Bezug
Ableitungsregeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Mi 15.12.2010
Autor: ella87

und wie löse ich das dann?

[mm]\bruch{g(x+ \Delta x)-g(x)}{\Delta x}[/mm] = [mm]\bruch{f(d(x+\Delta x))-f(x)}{\Delta x}[/mm] = [mm]\bruch{f(d x+d \Delta x))-f(d x)}{\Delta x}[/mm] = ?

wie bekomme ich denn das d davor? und stimmt der letzte Umformungsschritt?

Bezug
                                        
Bezug
Ableitungsregeln: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Mi 15.12.2010
Autor: Sax


> und wie löse ich das dann?
>  
> [mm]\bruch{g(x+ \Delta x)-g(x)}{\Delta x}[/mm] = [mm]\bruch{f(d(x+\Delta x))-f(\red{d}x)}{\Delta x}[/mm]
> = [mm]\bruch{f(d x+d \Delta x))-f(d x)}{\Delta x}[/mm] = ?
>  
> wie bekomme ich denn das d davor? und stimmt der letzte
> Umformungsschritt?

Ja, der stimmt, warum auch nicht ?

Du kannst jetzt im Zähler und Nenner mit d erweitern (unsinnige Formulierung - im Zähler und Nenner wird multipliziert, der Bruch wird erweitert). Anschließend benutzt du, dass  [mm] d\Delta{}x [/mm] = [mm] d*(x-x_0) [/mm] = dx - [mm] dx_0 [/mm] = [mm] \Delta(dx) [/mm] ist. Jetzt kannst du statt dx auch z schreiben und erhälst dein Ergebnis.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]