matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenAbleitungsproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Rationale Funktionen" - Ableitungsproblem
Ableitungsproblem < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungsproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:47 Mi 27.06.2007
Autor: Lerche

Aufgabe
Ich möchte die ganze Aufgabestellung hier jetzt nicht hineinposten, da ich denke das selber hinzubekommen. Ich brauche nur etwas Hilfe bei einer Ableitung, da ich nicht weiß wie man es richtig macht.

Die Funktion lautet [mm] f_{a}(x)=\bruch{x^2-4}{x^2+a} [/mm]

Durch Polynomdivision kommt man auf die Gleichung [mm] f_{a}(x)=1+\bruch{-4-a}{x^2+a}. [/mm] Sprich das ist ja denn [mm] f_{a}(x)=1+(-4-a)(x^2+a)^{-1} [/mm]

Mein Problem jetzt ist. Wie leitet man diese Funktion richtig ab?

        
Bezug
Ableitungsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 13:15 Mi 27.06.2007
Autor: Somebody


> Ich möchte die ganze Aufgabestellung hier jetzt nicht
> hineinposten, da ich denke das selber hinzubekommen. Ich
> brauche nur etwas Hilfe bei einer Ableitung, da ich nicht
> weiß wie man es richtig macht.
>  Die Funktion lautet [mm]f_{a}(x)=\bruch{x^2-4}{x^2+a}[/mm]
>  
> Durch Polynomdivision kommt man auf die Gleichung
> [mm]f_{a}(x)=1+\bruch{-4-a}{x^2+a}.[/mm]

Ich für meinen Teil würde dies so schreiben [mm]f_a(x)=1-\frac{a+4}{x^2+a}[/mm]

> Sprich das ist ja denn
> [mm]f_{a}(x)=1+(-4-a)(x^2+a)^{-1}[/mm]
>  
> Mein Problem jetzt ist. Wie leitet man diese Funktion
> richtig ab?

Den ursprünglichen Funktionsterm hätte man nach der Quotientenregel
[mm]\left(\frac{u}{v}\right)' = \frac{u' v-u v'}{v^2}[/mm]

abgeleitet. In der Form, die Du nach der Polynomdivision hast, genügt ein Spezialfall der Quotientenregel, die "Reziprokenregel":
[mm]\left(\frac{1}{v}\right)'=-\frac{v'}{v^2}[/mm]

Die Konstante 1 verschindet beim Ableiten natürlich, es genügt also die Reziprokenregel auf [mm]-\frac{a+4}{x^2+a}=-(a+4)\cdot \frac{1}{x^2+a}[/mm] anzuwenden:
[mm]f'_a(x)=-(a+4)\cdot \left(-\frac{2x}{(x^2+a)^2}\right) = \frac{2(a+4)x}{(x^2+a)^2}[/mm]

Zum Vergleich hier noch die direkte Anwendung der Quotientenregel auf den urspünglich gegebenen Funktionsterm
[mm]f'_a(x)=\frac{2x\cdot (x^2+a)-(x^2-4)\cdot 2x}{(x^2+a)^2}=\frac{2x^3+2ax-2x^3+8x}{(x^2+a)^2}=\frac{2(a+4)x}{(x^2+a)^2}[/mm]


Bezug
                
Bezug
Ableitungsproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 Mi 27.06.2007
Autor: Lerche

Danke schon mal

Und wie würde man dann mit der 2ten und 3ten Ableitung fortsetzen?

Bezug
                        
Bezug
Ableitungsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Mi 27.06.2007
Autor: Steffi21

Hallo,

[mm] f'(x)=\bruch{2x(a+4)}{(x^{2}-4)^{2}} [/mm]

mache jetzt wieder Quotientenregel, beachte aber den Nenner nach Kettenregel abzuleiten,

u=2x(a+4)
u'=2(a+4)

[mm] v=(x^{2}-4)^{2} [/mm]
[mm] v'=2(x^{2}-4)*2x=4x(x^{2}-4) [/mm]

Steffi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]