matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenAbleitungsfunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - Ableitungsfunktionen
Ableitungsfunktionen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungsfunktionen: Problem
Status: (Frage) beantwortet Status 
Datum: 15:21 Di 06.05.2008
Autor: Laura28

Aufgabe
[mm] f(x)=ax^4+bx^3+cx^2+dx+e [/mm]

hey
ich hab da mal ne frage ... ist das mit den ableitungsfunktionen wirklich so einfach, dass man nur den exponenten mit der vor dem x stehenden zahl multiplizieren muss? für die erste ableitungsfunktion also einfach [mm] 4x^3+3x^2+2x+d [/mm] hat und falls das jetzt so stimmen sollte dann macht man doch das selbe mit der ersten ableitungsfunktion noch mal und dann hat man die zweite oder? und was passiert mit dem e fällt das dann einfach weg?

        
Bezug
Ableitungsfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Di 06.05.2008
Autor: Teufel

Hi!

Ja, es ist wirklich so einfach, allerdings hast du es etwas falsch umgesetzt :)

$ [mm] f(x)=ax^4+bx^3+cx^2+dx+e [/mm] $
$ [mm] f'(x)=4ax^3+3bx^2+2cx+d [/mm] $

Und das e entfällt, weil es eine Konstante ist. Dadurch wir der Graf ja nur nach "oben und unten" verschoben, ändert aber nicht sein Anstieg an irgendeiner Stelle. Oder du schreibst statt e [mm] ex^0 [/mm] hin un leitest das ab. Hier siehst du auch, dass dieser Teil dann entfällt! [mm] (0*ex^{-1}=0) [/mm]

Genau, wenn du das dann nochmal tust, hast du die 1. Ableitung der 1. Ableitung von f, doer kurz: die 2. Ableitung von f.

$ [mm] f''(x)=12ax^2+6bx+2c [/mm] $

[anon] Teufel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]