matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenAbleitungen und Tangenten!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Rationale Funktionen" - Ableitungen und Tangenten!
Ableitungen und Tangenten! < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen und Tangenten!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Mo 18.02.2008
Autor: S_Kupfy

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo
Aufgabe 1
Bilde y´´´´! Wie laute die Tangentengleichung im Punkt [mm] P(x_0/f(x_0)) [/mm]

[mm] y=\bruch{x^2-3x}{x+2} [/mm]?    [mm] x_0=2 [/mm]

Mit den Tangenten will ich mich erst beschäftigen wenn ich weiß ob die Ableitungen stimmen!

Als die erste Ableitung bekomme ich glaube ich noch hin!

[mm] y´=\bruch{x^2+4x+6}{(x+2)^2} [/mm]

Als 3. Ableitung soll [mm] y´´´=\bruch{-60}{(x+2)^4} [/mm] weis aber nicht wie ich da hinkommen soll!

Habe nämlich als 2. Ableitung [mm] y´´= \bruch{-4}{(x+2)^3} [/mm]  raus!

Danke in voraus!

Aufgabe 2
Bilde y´´´! An welcher Stelle [mm] x_0 [/mm] hat die Funktion f(x) den Anstieg m? Wie lautet die Tangentengleichung durch den Punkt [mm] P(x_0/f(x_o)) [/mm]

[mm] y= 2* (\sin(X))^2 [/mm]     m= 0

Also habe errechnet

[mm] y´= 4* (\sin(X)*\cos(x)) = \sin(4x) [/mm]


[mm] y´´= \cos(4x) [/mm]

[mm] y´´´= - (\sin(4X)) [/mm]

bin mir aber überhaubt nicht sicher ob das richtig ist.

        
Bezug
Ableitungen und Tangenten!: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Mo 18.02.2008
Autor: abakus


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hallo
> Aufgabe 1
> Bilde y´´´´! Wie laute die Tangentengleichung im Punkt
> [mm]P(x_0/f(x_0))[/mm]
>  
> [mm]y=\bruch{x^2-3x}{x+2} [/mm]?    [mm]x_0=2[/mm]
>  
> Mit den Tangenten will ich mich erst beschäftigen wenn ich
> weiß ob die Ableitungen stimmen!
>  
> Als die erste Ableitung bekomme ich glaube ich noch hin!

Schön war's!.

>
> [mm]y´=\bruch{x^2+4x+6}{(x+2)^2}[/mm]

Ich habe da [mm]y´=\bruch{x^2+4x-6}{(x+2)^2}[/mm].
Das gibt natürlich jede Menge Folgefehler in den nächsten Ableitungen.
Also: Frisch ans Werk!
Viele Grüße
Abakus

>  
> Als 3. Ableitung soll [mm]y´´´=\bruch{-60}{(x+2)^4}[/mm] weis aber
> nicht wie ich da hinkommen soll!
>
> Habe nämlich als 2. Ableitung [mm]y´´= \bruch{-4}{(x+2)^3}[/mm]  
> raus!
>
> Danke in voraus!
>  Aufgabe 2
>  Bilde y´´´! An welcher Stelle [mm]x_0[/mm] hat die Funktion f(x)
> den Anstieg m? Wie lautet die Tangentengleichung durch den
> Punkt [mm]P(x_0/f(x_o))[/mm]
>  
> [mm]y= 2* (\sin(X))^2[/mm]     m= 0
>  
> Also habe errechnet
>  
> [mm]y´= 4* (\sin(X)*\cos(x)) = \sin(4x)[/mm]
>  
>
> [mm]y´´= \cos(4x)[/mm]
>  
> [mm]y´´´= - (\sin(4X))[/mm]
>  
> bin mir aber überhaubt nicht sicher ob das richtig ist.


Bezug
                
Bezug
Ableitungen und Tangenten!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Mo 18.02.2008
Autor: S_Kupfy

Aufgabe
Ok. Habe meinen Fehler gefunden muss nur nochmal rechnen aber was ist mit der 2. Aufgabe ist die jedenfalls richtig?

> > Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.
> >
> > Hallo
> > Aufgabe 1
> > Bilde y´´´´! Wie laute die Tangentengleichung im Punkt
> > [mm]P(x_0/f(x_0))[/mm]
>  >  
> > [mm]y=\bruch{x^2-3x}{x+2} [/mm]?    [mm]x_0=2[/mm]
>  >  
> > Mit den Tangenten will ich mich erst beschäftigen wenn ich
> > weiß ob die Ableitungen stimmen!
>  >  
> > Als die erste Ableitung bekomme ich glaube ich noch hin!
>
> Schön war's!.
>  
> >
> > [mm]y´=\bruch{x^2+4x+6}{(x+2)^2}[/mm]
>  
> Ich habe da [mm]y´=\bruch{x^2+4x-6}{(x+2)^2}[/mm].


>  Das gibt natürlich jede Menge Folgefehler in den nächsten
> Ableitungen.
>  Also: Frisch ans Werk!
>  Viele Grüße
>  Abakus
>  
> >  

> > Als 3. Ableitung soll [mm]y´´´=\bruch{-60}{(x+2)^4}[/mm] weis aber
> > nicht wie ich da hinkommen soll!
> >
> > Habe nämlich als 2. Ableitung [mm]y´´= \bruch{-4}{(x+2)^3}[/mm]  
> > raus!
> >
> > Danke in voraus!
>  >  Aufgabe 2
>  >  Bilde y´´´! An welcher Stelle [mm]x_0[/mm] hat die Funktion f(x)
> > den Anstieg m? Wie lautet die Tangentengleichung durch den
> > Punkt [mm]P(x_0/f(x_o))[/mm]
>  >  
> > [mm]y= 2* (\sin(X))^2[/mm]     m= 0
>  >  
> > Also habe errechnet
>  >  
> > [mm]y´= 4* (\sin(X)*\cos(x)) = \sin(4x)[/mm]
>  >  
> >
> > [mm]y´´= \cos(4x)[/mm]
>  >  
> > [mm]y´´´= - (\sin(4X))[/mm]
>  >  
> > bin mir aber überhaubt nicht sicher ob das richtig ist.
>  


Bezug
                        
Bezug
Ableitungen und Tangenten!: Ableitungen
Status: (Antwort) fertig Status 
Datum: 08:32 Di 19.02.2008
Autor: clwoe

Hi,

die zweite Aufgabe stimmt definitiv nicht. Die Ableitungen sind falsch.

[mm] f^{'''}=-16*cos(x)*sin(x) [/mm]

Dort wo m=0 ist, befinden sich natürlich die Extremwerte der Funktion. Also einfach die Ableitung 0 setzen und nach x auflösen.

Du bekommst hier zwei Extremwerte heraus.

Die Gleichung dieser Geraden sind dann Parallele zur x-Achse.

Gruß,
clwoe


Bezug
                                
Bezug
Ableitungen und Tangenten!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Di 19.02.2008
Autor: S_Kupfy


> Hi,
>  
> die zweite Aufgabe stimmt definitiv nicht. Die Ableitungen
> sind falsch.
>  
> [mm]f^{'''}=-16*cos(x)*sin(x)[/mm]
>  
> Dort wo m=0 ist, befinden sich natürlich die Extremwerte
> der Funktion. Also einfach die Ableitung 0 setzen und nach
> x auflösen.
>
> Du bekommst hier zwei Extremwerte heraus.
>  
> Die Gleichung dieser Geraden sind dann Parallele zur
> x-Achse.
>
> Gruß,
>  clwoe
>  

Danke schön für die hilfe, hat mir sehr geholfen, schönen tag wünsch ich noch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]