matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenAbleitungen richtig?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Ableitungen richtig?
Ableitungen richtig? < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen richtig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Mo 02.04.2012
Autor: Limaros

Aufgabe
Bestimmen Sie die partielle Ableitung der folgenden Funktion nach a bzw. nach r!

[mm] f(x)=\frac{r(1-cos\frac{a}{r})}{cos\frac{a}{r}} [/mm]

Hallo zusammen!

Für [mm] \frac{\partial f}{\partial a} [/mm] bin ich ganz zuversichtlich:

[mm] \frac{\partial f}{\partial a}=\frac{sin\frac{a}{r}}{cos^2\frac{a}{r}}. [/mm]

Für [mm] \frac{\partial f}{\partial r} [/mm] habe ich jetzt drei verschiedene Ergebnisse raus, irgendwie komme ich da immer durcheinander.

[mm] \frac{\partial f}{\partial r}=\frac{cos\frac{a}{r}-cos^2\frac{a}{r}-\frac{a}{r}sin\frac{a}{r}}{cos^2\frac{a}{r}} [/mm]

Das wäre sehr nett, wenn da noch mal jemand drüberschauen könnte, ob die Ableitungen so stimmen, die Aufgabe geht noch ziemlich lange weiter und ich hätte gerne wenigstens den Anfang richtig.

Danke! Limaros

        
Bezug
Ableitungen richtig?: beides richtig
Status: (Antwort) fertig Status 
Datum: 15:55 Mo 02.04.2012
Autor: Roadrunner

Hallo Limaros!


> [mm]f(x)=\frac{r(1-cos\frac{a}{r})}{cos\frac{a}{r}}[/mm]

Das soll bestimmt [mm] $f(\red{a},\red{r}) [/mm] \ = \ ...$ lauten.


> [mm]\frac{\partial f}{\partial a}=\frac{sin\frac{a}{r}}{cos^2\frac{a}{r}}.[/mm]

[ok]



> [mm]\frac{\partial f}{\partial r}=\frac{cos\frac{a}{r}-cos^2\frac{a}{r}-\frac{a}{r}sin\frac{a}{r}}{cos^2\frac{a}{r}}[/mm]

[ok] Das habe ich auch erhalten.


Gruß vom
Roadrunner

Bezug
                
Bezug
Ableitungen richtig?: Noch ne Frage
Status: (Frage) beantwortet Status 
Datum: 16:29 Mo 02.04.2012
Autor: Limaros

Hallo!

Da scheint ja sogar für mich noch Hoffnung zu bestehen! Noch eine Frage zu den beiden Ableitungen. Aus geometrischen Überlegungen, die in meiner Aufgabe vorkommen, folgt, daß beide partiellen Ableitungen für a,r>0 und [mm] a/r<\pi/2 [/mm] positiv sein müssen. Für [mm] \frac{\partial f}{\partial a} [/mm] sehe ich das sofort. Aber wie folgt das für [mm] \frac{\partial f}{\partial r}? [/mm]

Danke für Antwort, Limaros

Bezug
                        
Bezug
Ableitungen richtig?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Mo 02.04.2012
Autor: leduart

Hallo
es folgt nicht! setz für [mm] a/r=1.5<\pi/2 [/mm] ein und du kriegst nen kräftig negativen Wert!ich denk es ist für alle [mm] a/r<\pi/2 [/mm] kleiner 0
Gruss leduart

Bezug
                                
Bezug
Ableitungen richtig?: Fehler in der letzten Frage...
Status: (Frage) beantwortet Status 
Datum: 09:06 Di 03.04.2012
Autor: Limaros

Hallo,

ja, das ist mir dann heute nacht auf irgendwann gekommen. In der Tat sollte [mm] \frac{\partial f}{\partial r} [/mm] für a,r> 0 und [mm] a/r<\pi/2 [/mm] negativ sein. Leider kann ich auch das der Ableitung nicht direkt ansehen. Könnte mir da noch jemand einen Tipp geben?!?

Gruß, Limaros

Bezug
                                        
Bezug
Ableitungen richtig?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 Di 03.04.2012
Autor: leduart

Hallo
setz a/r=x
dein df/dr
hat einen garantiert positiven Nenner, also nur den zähler ansehen.
z(x)=cosx-cos^2x-xsinx
z(0)=0 z'<0 für [mm] 0 gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]