matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisAbleitungen holomorpher Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Ableitungen holomorpher Fkt.
Ableitungen holomorpher Fkt. < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen holomorpher Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:01 So 27.06.2010
Autor: jxn

Aufgabe 1
Man bestimme alle Funktionen f [mm] \in H(\IC), [/mm] die |f'(z)| < |f(z)| für alle [mm] z\in\IC [/mm] erfüllen.

Aufgabe 2
Es sei [mm] \Omega\subset\IC [/mm] eine offene Menge, [mm] f\in H(\Omega). [/mm] Man zeige:
1) Für alle [mm] z\in\Omega [/mm] gibt es ein r>0 mit der folgenden Eigenschaft: Es gibt eine holomorphe Funktion g: [mm] B_r(z)\to\IC, [/mm] so dass f=g'.
2) Falls [mm] \Omega [/mm] konvex ist, dann gibt es eine holomorphe Funktion g: [mm] \Omega\to\IC [/mm] mit f=g'.

Hallo zusammen!

Zu holomorphen Funktionen ist bekannt:
f ist holomorph ist dazu äquivalent, dass
1) [mm] \limes_{z\rightarrow\z_0} \bruch{f(z)-f(z_0)}{z-z_0} [/mm] existiert
2) f ist reell diffbar, Cauchy-Riemann-Differentialgleichungen sind erfüllt
3) f ist analytisch
4) Integral von f über eine Schleife [mm] \gamma [/mm] ist = 0.
Ferner sind der Satz von Liouville und der Identitätssatz bekannt.

Zu Aufgabe 1:
Konkret fallen mir erstmal alle konstanten Funktionen ein, und alle Funktionen der Art e^(a*z) mit 0<a<1. Aber das ist ja wenig systematisch ausgearbeitet.

Zu Aufgabe 2:
Hier fehlt mir leider komplett ein guter Ansatz. Aus den C-R-DGL kann man folgern dass, wenn man f=u+iv schreibt, dass dann [mm] f'=u_x+iv_x [/mm] sein muss.
Bringt mich das bei einer der Aufgaben weiter?

Über einen Denkanstoß würde ich mich sehr freuen.

Gruß,
jxn

        
Bezug
Ableitungen holomorpher Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Mo 28.06.2010
Autor: fred97


> Man bestimme alle Funktionen f [mm]\in H(\IC),[/mm] die |f'(z)| <
> |f(z)| für alle [mm]z\in\IC[/mm] erfüllen.
>  Es sei [mm]\Omega\subset\IC[/mm] eine offene Menge, [mm]f\in H(\Omega).[/mm]
> Man zeige:
>  1) Für alle [mm]z\in\Omega[/mm] gibt es ein r>0 mit der folgenden
> Eigenschaft: Es gibt eine holomorphe Funktion g:
> [mm]B_r(z)\to\IC,[/mm] so dass f=g'.
>  2) Falls [mm]\Omega[/mm] konvex ist, dann gibt es eine holomorphe
> Funktion g: [mm]\Omega\to\IC[/mm] mit f=g'.
>  Hallo zusammen!
>  
> Zu holomorphen Funktionen ist bekannt:
>  f ist holomorph ist dazu äquivalent, dass
>  1) [mm]\limes_{z\rightarrow\z_0} \bruch{f(z)-f(z_0)}{z-z_0}[/mm]
> existiert
>  2) f ist reell diffbar,
> Cauchy-Riemann-Differentialgleichungen sind erfüllt
>  3) f ist analytisch
>  4) Integral von f über eine Schleife [mm]\gamma[/mm] ist = 0.
>  Ferner sind der Satz von Liouville und der Identitätssatz
> bekannt.
>  
> Zu Aufgabe 1:
>  Konkret fallen mir erstmal alle konstanten Funktionen ein,
> und alle Funktionen der Art e^(a*z) mit 0<a<1. Aber das ist
> ja wenig systematisch ausgearbeitet.



Wegen  |f'(z)| < |f(z)| für alle $ [mm] z\in\IC [/mm] $, ist f  auf [mm] \IC [/mm] nullstellenfrei, somit ist g:=f'/f eine ganze Funktion mit |g| <1 auf [mm] \IC. [/mm] Was sagt Liouville dazu ?


>  
> Zu Aufgabe 2:
>  Hier fehlt mir leider komplett ein guter Ansatz. Aus den
> C-R-DGL kann man folgern dass, wenn man f=u+iv schreibt,
> dass dann [mm]f'=u_x+iv_x[/mm] sein muss.
>  Bringt mich das bei einer der Aufgaben weiter?



1) folgt aus 2) !!

Zu 2) Wähle [mm] z_0 \in \Omega [/mm] fest. Für z [mm] \in \Omega [/mm] sei [mm] \gamma_z(t) [/mm] := [mm] z_0+t(z-z_0) [/mm]  (t [mm] \in [/mm] [0,1])

Setze    $g(z):= [mm] \integral_{\gamma_z}^{}{f(w) dw}$ [/mm]


FRED

>  
> Über einen Denkanstoß würde ich mich sehr freuen.
>  
> Gruß,
>  jxn


Bezug
                
Bezug
Ableitungen holomorpher Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:18 Mo 28.06.2010
Autor: jxn

Damit kann ich was anfangen. Dankeschön.

Gruß,
jxn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]