matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitungen exp-F.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Ableitungen exp-F.
Ableitungen exp-F. < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen exp-F.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:03 Mo 18.12.2006
Autor: Idale

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi,
ich glaube, ich hab ein paar Probleme mit Ableitungen von exp-Funkionen...ich bin mir nämlich nie wirklich sicher, ob ich das machen darf, was ich gerade mache... anhand von drei Ableitungen, 2 einfach u. eine schwere, möchte ich dies einmal demonstrieren :-)

a) f(x) = [mm] e^\wurzel{x-2} [/mm] - f'(x) = [mm] \bruch{1}{2}e^{x-2}^\bruch{-1}{2} [/mm] * 1

b) f(x) = e^-x * x² - f'(x) = -e^-x * x² + e^-x * 2x

c) f(x) = a^sinx * lna =  f'(x) = 2lna cosx * a^sinx + [mm] \bruch{a^sinx }{a} [/mm]

Ich dürfte nicht zufällig a kürzen?

Besten Dank im Voraus

MFG




        
Bezug
Ableitungen exp-F.: Kettenregel
Status: (Antwort) fertig Status 
Datum: 14:16 Mo 18.12.2006
Autor: Loddar

Hallo Idale!


Grundsätzlich gilt bei der Anwendung der MBKettenregel auch im Zusammenhang mit exp-Funktionen, dass das Argument erhalten bleibt und erst in der inneren Ableitung berücksichtigt wird:

$f(x) \ = \ [mm] e^{\wurzel{x-2}} [/mm] \ = \ [mm] e^{\text{irgendwas}}$ [/mm]

$f'(x) \ = \ [mm] \underbrace{e^{\text{irgendwas}}}_{\text{äußere Abl.}}*\underbrace{(\text{irgendwas})'}_{\text{innere Abl.}} [/mm] \ = \ [mm] e^{\wurzel{x-2}}*\left( \ \wurzel{x-2} \ \right)' [/mm] \ = \ [mm] e^{\wurzel{x-2}}*\bruch{1}{2*\wurzel{x-2}}*1$ [/mm]


> b) f(x) = e^-x * x² - f'(x) = -e^-x * x² + e^-x * 2x

[ok] Stimmt.

  

> c) f(x) = a^sinx * lna =  f'(x) = 2lna cosx * a^sinx + [mm]\bruch{a^sinx }{a}[/mm]

Hier ist mir die Ausgangsfunktion unklar ... [kopfkratz3]

$f(x) \ = \ [mm] a^{\sin(x)}*\ln(a)$ [/mm]     oder    $f(x) \ = \ [mm] a^{\sin(x)*\ln(a)}$ [/mm]  ??


Gruß
Loddar


Bezug
                
Bezug
Ableitungen exp-F.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 Mo 18.12.2006
Autor: Idale


>  
> Hier ist mir die Ausgangsfunktion unklar ... [kopfkratz3]
>  
> [mm]f(x) \ = \ a^{\sin(x)}*\ln(a)[/mm]     oder    [mm]f(x) \ = \ a^{\sin(x)*\ln(a)}[/mm]
>  ??
>  
>
> Gruß
>  Loddar
>  

Das erste ist gemeint, [mm]f(x) \ = \ a^{\sin(x)}*\ln(a)[/mm]...wenn ich mir meine Ableitung anschaue, dann wäre die sogar richtig, oder?

Danke schön für die bisherige Hilfe

Bezug
                        
Bezug
Ableitungen exp-F.: leider falsch
Status: (Antwort) fertig Status 
Datum: 15:42 Mo 18.12.2006
Autor: Loddar

Hallo Idale!


Da muss ich Dich leider enttäuschen. Der Wert $a_$ ist ja wie eine Konstante anzusehen (und damit auch [mm] $\ln(a)$ [/mm] ).

Wie lautet denn die Ableitung zu [mm] $a^x$ [/mm] ?


Gruß
Loddar


Bezug
                                
Bezug
Ableitungen exp-F.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Mo 18.12.2006
Autor: Idale


>  
>
> Da muss ich Dich leider enttäuschen. Der Wert [mm]a_[/mm] ist ja wie
> eine Konstante anzusehen (und damit auch [mm]\ln(a)[/mm] ).
>  
> Wie lautet denn die Ableitung zu [mm]a^z[/mm] ?
>  
>
> Gruß
>  Loddar
>  

Ich hoffe, dass ist jetzt keine Fangfrage...sonst blamier ich mich ja nur... das wäre dann doch 0, oder?

Und das würde bedeuten, dass die erste Ableitung nur 2lna * cosx * a^sinx sei, jetzt richtig?

MFG

Bezug
                                        
Bezug
Ableitungen exp-F.: fast richtig ...
Status: (Antwort) fertig Status 
Datum: 16:09 Mo 18.12.2006
Autor: Loddar

Hallo Idale!


Hm, war nicht geschickt gestellt die Frage. Ich meinte schon die Ableitung von [mm] $a^x$ [/mm] ...



> Und das würde bedeuten, dass die erste Ableitung nur
> 2lna * cosx * a^sinx sei

Fast ... Ich glaube, Du meinst das Richtige ... aber beim Zusammenfassen von [mm] $\ln(a)*\ln(a)$ [/mm] erhalten wir [mm] $[\ln(a)]^2 [/mm] \ = \ [mm] \ln^2(a)$ [/mm] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]